Skip to main content
Log in

Spatially mapping the diffusivity of proteins in live cells based on cumulative area analysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Molecular motion provides a way for biomolecules to mix and interact in living systems. Quantifying their motion is critical to the understanding of how biomolecules perform its function. However, it has been a challenged task to spatially map the fast diffusion of unbound proteins in the heterogenous intracellular environment. Here we reported a new imaging technique named cumulative area based on single-molecule diffusivity mapping (CA-SMdM). The strategy is based on the comparison of single-molecule images between a shorter and longer exposure time. With longer exposure time, molecules will travel further, thus giving more blurred single-molecule images, hence implying its local diffusion rates. We validated our technique through measuring the fast diffusion rates (10–40 µm2/s) of fluorescent dye in glycerol-water mixture, and found the values fit well with Stokes-Einstein equation. We further showed that the spatially mapping of diffusivity in live cells is plausible through CA-SMdM, and it faithfully reported the local diffusivity heterogeneity in cytosol and nucleus. CA-SMdM provides an efficient way to mapping the local molecular motion, and therefore will have profound applications in probing the biomolecular interactions for living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK. Nat Chem Biol, 2014, 10: 524–532

    Article  CAS  PubMed  Google Scholar 

  2. Liu C, Liu YL, Perillo EP, Dunn AK, Yeh HC. IEEE J Sel Top Quantum Electron, 2016, 22: 64–76

    Article  Google Scholar 

  3. Appelhans T, Richter CP, Wilkens V, Hess ST, Piehler J, Busch KB. Nano Lett, 2012, 12: 610–616

    Article  CAS  PubMed  Google Scholar 

  4. Yildiz A. Nat Rev Mol Cell Biol, 2021, 22: 73

    Article  CAS  PubMed  Google Scholar 

  5. Robson A, Burrage K, Leake MC. Phil Trans R Soc B, 2013, 368: 20120029

    Article  PubMed  PubMed Central  Google Scholar 

  6. Westra M, MacGillavry HD. Membranes, 2022, 12: 650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kusumi A, Shirai YM, Koyama-Honda I, Suzuki KGN, Fujiwara TK. FEBS Lett, 2010, 584: 1814–1823

    Article  CAS  PubMed  Google Scholar 

  8. Sergé A, Bertaux N, Rigneault H, Marguet D. Nat Methods, 2008, 5: 687–694

    Article  PubMed  Google Scholar 

  9. Appelhans T, Busch K. Methods Mol Biol, 2017, 1567: 273–291

    Article  CAS  PubMed  Google Scholar 

  10. Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N, Shuang B, Landes CF. Chem Rev, 2017, 117: 7331–7376

    Article  CAS  PubMed  Google Scholar 

  11. Lippincott-Schwartz J, Snapp E, Kenworthy A. Nat Rev Mol Cell Biol, 2001, 2: 444–456

    Article  CAS  PubMed  Google Scholar 

  12. Li N, Zhao R, Sun Y, Ye Z, He K, Fang X. Natl Sci Rev, 2017, 4: 739–760

    Article  CAS  Google Scholar 

  13. Martinez-Moro M, Di Silvio D, Moya SE. Biophys Chem, 2019, 253: 106218

    Article  CAS  PubMed  Google Scholar 

  14. Tian Y, Martinez MM, Pappas D. Appl Spectrosc, 2011, 65: 115–124

    Article  PubMed Central  Google Scholar 

  15. Lippincott-Schwartz J, Snapp EL, Phair RD. Biophys J, 2018, 115: 1146–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michaluk P, Rusakov DA. Nat Protoc, 2022, 17: 3056–3079

    Article  CAS  PubMed  Google Scholar 

  17. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. Biophys J, 1976, 16: 1055–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wolff JO, Scheiderer L, Engelhardt T, Engelhardt J, Matthias J, Hell SW. Science, 2023, 379: 1004–1010

    Article  CAS  PubMed  Google Scholar 

  19. Xiang L, Chen K, Yan R, Li W, Xu K. Nat Methods, 2020, 17: 524–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elf J, Li GW, Xie XS. Science, 2007, 316: 1191–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. English BP, Hauryliuk V, Sanamrad A, Tankov S, Dekker NH, Elf J. Proc Natl Acad Sci USA, 2011, 108: E365–E373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steele I, Jermak H, Copperwheat C, Smith R, Poshyachinda S, Soonthorntham B. Experiments with synchronized SCMOS cameras. In: Conference on High Energy, Optical, and Infrared Detectors for Astronomy VII. Edinburgh, Scotland, 2016. 991522

  23. Chang WJ, Dai F, Na QY. The challenge of SCMOS image sensor technology to EMCCD. In: 4th Seminar on Novel Optoelectronic Detection Technology and Application. Nanjing, 2018. 1069711

  24. Almada P, Culley S, Henriques R. Methods, 2015, 88: 109–121

    Article  CAS  PubMed  Google Scholar 

  25. Serag MF, Abadi M, Habuchi S. Nat Commun, 2014, 5: 5123

    Article  CAS  PubMed  Google Scholar 

  26. Boersma AJ, Zuhorn IS, Poolman B. Nat Methods, 2015, 12: 227–229

    Article  CAS  PubMed  Google Scholar 

  27. Choi AA, Xiang L, Li W, Xu K. J Am Chem Soc, 2023, 145: 8510–8516

    CAS  Google Scholar 

  28. Segur JB, Oberstar HE. Ind Eng Chem, 1951, 43: 2117–2120

    Article  CAS  Google Scholar 

  29. Topping J. Phys Bull, 1956, 7: 281

    Article  Google Scholar 

  30. Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J, Xu P, Xu T. Nat Methods, 2012, 9: 727–729

    Article  CAS  PubMed  Google Scholar 

  31. Swaminathan R, Hoang CP, Verkman AS. Biophys J, 1997, 72: 1900–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements This work was supported by the National Key R&D Program of China (2022YFA1305400) and the National Natural Science Foundation of China (22104113, 22274122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Xiang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Han, C. & Xiang, L. Spatially mapping the diffusivity of proteins in live cells based on cumulative area analysis. Sci. China Chem. 66, 3307–3313 (2023). https://doi.org/10.1007/s11426-023-1764-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1764-x

Navigation