Skip to main content
Log in

Regulation of P450 TleB catalytic flow for the synthesis of sulfur-containing indole alkaloids by substrate structure-directed strategy and protein engineering

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Indole alkaloids have attracted considerable attention from synthetic chemists and biochemists for their structural diversity and important biological activities. Compared with traditional organic synthesis methods, the strategy of using cytochrome P450s’ extraordinary abilities to selectively activate carbon-hydrogen bonds to assist in the synthesis of various indole alkaloids has the characteristics of short synthetic route, mild conditions and high atomic economy. Here, we utilized P450 monooxygenases HinD and TleB to synthesize a novel 6/5/8 tricyclic product from (S)-N-((S)-1-(4-fluoro-1H-indol-3-yl)-3-hydroxypropan-2-yl)-2-mercapto-3-methylbutanamide through the substrate structure-directed strategy. TleB was more effective in catalyzing C–S coupling, and was used to synthesize a series of 6/5/8 tricyclic indololactam derivatives to provide drug candidates. Interestingly, the S–S coupling product was observed in HinD catalysis, which was a minor product in the wild-type TleB catalysis. With the help of protein engineering, we accurately regulated the catalytic flow and reversed the selectivity of TleB to obtain the S–S coupling product. At the same time, the reaction mechanism was reasonably speculated by means of site blocking and protein-substrate complex analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman DJ. Natl Sci Rev, 2022, 9: nwac206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Newman DJ, Cragg GM. J Nat Prod, 2020, 83: 770–803

    Article  CAS  PubMed  Google Scholar 

  3. Rodrigues T, Reker D, Schneider P, Schneider G. Nat Chem, 2016, 8: 531–541

    Article  CAS  PubMed  Google Scholar 

  4. Zhou B, Yue JM. Natl Sci Rev, 2022, 9: nwac112

    Article  PubMed  PubMed Central  Google Scholar 

  5. Godula K, Sames D. Science, 2006, 312: 67–72

    Article  CAS  PubMed  Google Scholar 

  6. Labinger JA, Bercaw JE. Nature, 2002, 417: 507–514

    Article  CAS  PubMed  Google Scholar 

  7. Yamaguchi J, Yamaguchi AD, Itami K. Angew Chem Int Ed, 2012, 51: 8960–9009

    Article  CAS  Google Scholar 

  8. Barry SM, Kers JA, Johnson EG, Song L, Aston PR, Patel B, Krasnoff SB, Crane BR, Gibson DM, Loria R, Challis GL. Nat Chem Biol, 2012, 8: 814–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Devine AJ, Parnell AE, Back CR, Lees NR, Johns ST, Zulkepli AZ, Barringer R, Zorn K, Stach JEM, Crump MP, Hayes MA, van der Kamp MW, Race PR, Willis CL. Angew Chem Int Ed, 2023, 62: e202213053

    Article  CAS  Google Scholar 

  10. Grandner JM, Cacho RA, Tang Y, Houk KN. ACS Catal, 2016, 6: 4506–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li S, Tietz DR, Rutaganira FU, Kells PM, Anzai Y, Kato F, Pochapsky TC, Sherman DH, Podust LM. J Biol Chem, 2012, 287: 37880–37890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin Z, Xue Y, Liang XW, Wang J, Lin S, Tao J, You SL, Liu W. Angew Chem Int Ed, 2021, 60: 8401–8405

    Article  CAS  Google Scholar 

  13. Sherman DH, Li S, Yermalitskaya LV, Kim Y, Smith JA, Waterman MR, Podust LM. J Biol Chem, 2006, 281: 26289–26297

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Zou Y, Li M, Tang Z, Wang J, Tian Z, Strassner N, Yang Q, Zheng Q, Guo Y, Liu W, Pan L, Houk KN. Nat Chem, 2023, 15: 177–184

    Article  CAS  PubMed  Google Scholar 

  15. Long Y, Zheng S, Feng Y, Yang Z, Xu X, Song H. ACS Catal, 2022, 12: 9857–9863

    Article  CAS  Google Scholar 

  16. Lima LM, Silva BNM, Barbosa G, Barreiro EJ. Eur J Med Chem, 2020, 208: 112829

    Article  CAS  PubMed  Google Scholar 

  17. Ye W, Liu T, Liu Y, Li M, Wang S, Li S, Zhang W. Bioresource Tech, 2023, 377: 128905

    Article  CAS  Google Scholar 

  18. Xiong K, Xue S, Guo H, Dai Y, Ji C, Dong L, Zhang S. Crit Rev Food Sci Nutr, 2023, 1–12

  19. Shi Y, Jiang Z, Hu X, Hu X, Gu R, Jiang B, Zuo L, Li X, Sun H, Zhang C, Wang L, Wu L, Hong B. Angew Chem Int Ed, 2021, 60: 15399–15404

    Article  CAS  Google Scholar 

  20. Morita I, Mori T, Mitsuhashi T, Hoshino S, Taniguchi Y, Kikuchi T, Nagae K, Nasu N, Fujita M, Ohwada T, Abe I. Angew Chem Int Ed, 2020, 59: 3988–3993

    Article  CAS  Google Scholar 

  21. LaValle CR, Bravo-Altamirano K, Giridhar KV, Chen J, Sharlow E, Lazo JS, Wipf P, Wang QJ. BMC Chem Biol, 2010, 10: 5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen K, Arnold FH. J Am Chem Soc, 2020, 142: 6891–6895

    Article  CAS  PubMed  Google Scholar 

  23. Cui L, Cui A, Li Q, Yang L, Liu H, Shao W, Feng Y. ACS Catal, 2022, 12: 13703–13714

    Article  CAS  Google Scholar 

  24. Engström K, Nyhlén J, Sandström AG, Bäckvall JE. J Am Chem Soc, 2010, 132: 7038–7042

    Article  PubMed  Google Scholar 

  25. Prakinee K, Phintha A, Visitsatthawong S, Lawan N, Sucharitakul J, Kantiwiriyawanitch C, Damborsky J, Chitnumsub P, van Pée KH, Chaiyen P. Nat Catal, 2022, 5: 534–544

    Article  CAS  Google Scholar 

  26. Hong W, Swann WA, Yadav V, Li CW. ACS Catal, 2022, 12: 7643–7654

    Article  CAS  Google Scholar 

  27. Schelhaas M, Waldmann H. Angew Chem Int Ed Engl, 1996, 35: 2056–2083

    Article  CAS  Google Scholar 

  28. Wang W, Wan H, Du G, Dai B, He L. OrgLett, 2019, 21: 3496–3500

    CAS  Google Scholar 

  29. Curran MP, Keating GM. Drugs, 2005, 65: 2009–2035

    Article  CAS  PubMed  Google Scholar 

  30. Fan M, Huang Y, Zhu X, Zheng J, Du M. J Drug Target, 2023, 1–16

  31. He F, Mori T, Morita I, Nakamura H, Alblova M, Hoshino S, Awakawa T, Abe I. Nat Chem Biol, 2019, 15: 1206–1213

    Article  CAS  PubMed  Google Scholar 

  32. Kabsch W. Acta Crystlogr D Biol Crystlogr, 2010, 66: 125–132

    Article  CAS  Google Scholar 

  33. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. J Appl Crystlogr, 2007, 40: 658–674

    Article  CAS  Google Scholar 

  34. Emsley P, Lohkamp B, Scott WG, Cowtan K. Acta Crystlogr D Biol Crystlogr, 2010, 66: 486–501

    Article  CAS  Google Scholar 

  35. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD. Acta Crystlogr D Biol Crystlogr, 2012, 68: 352–367

    Article  CAS  Google Scholar 

  36. Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD. Acta Crystlogr D Struct Biol, 2019, 75: 861–877

    Article  CAS  Google Scholar 

  37. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Proc Natl Acad Sci USA, 2001, 98: 10037–10041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun H, Keefer CE, Scott DO. DrugMetab Lett., 2011, 5: 232–242

    CAS  Google Scholar 

  39. Smith BR, Eastman CM, Njardarson JT. J Med Chem, 2014, 57: 9764–9773

    Article  CAS  PubMed  Google Scholar 

  40. Almond-Thynne J, Blakemore DC, Pryde DC, Spivey AC. Chem Sci, 2017, 8: 40–62

    Article  CAS  PubMed  Google Scholar 

  41. Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Chem Rev, 2014, 114: 5815–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Góngora-Benítez M, Tulla-Puche J, Albericio F. Chem Rev, 2014, 114: 901–926

    Article  PubMed  Google Scholar 

  43. Guo J, Zha J, Zhang T, Ding CH, Tan Q, Xu B. Org Lett, 2021, 23: 3167–3172

    Article  CAS  PubMed  Google Scholar 

  44. Chakraborty A, Albericio F, de la Torre BG. J Org Chem, 2022, 87: 708–712

    Article  CAS  PubMed  Google Scholar 

  45. Dou Y, Huang X, Wang H, Yang L, Li H, Yuan B, Yang G. Green Chem, 2017, 19: 2491–2495

    Article  CAS  Google Scholar 

  46. Huang P, Wang P, Tang S, Fu Z, Lei A. Angew Chem Int Ed, 2018, 57: 8115–8119

    Article  CAS  Google Scholar 

  47. Laps S, Atamleh F, Kamnesky G, Sun H, Brik A. Nat Commun, 2021, 12: 870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Landeta C, Boyd D, Beckwith J. Nat Microbiol, 2018, 3: 270–280

    Article  CAS  PubMed  Google Scholar 

  49. Liu H, Fan J, Zhang P, Hu Y, Liu X, Li SM, Yin WB. Chem Sci, 2021, 12: 4132–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Z, Diao W, Wu P, Li J, Fu Y, Guo Z, Cao Z, Shaik S, Wang B. J Am Chem Soc, 2023, 145: 7252–7267

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0903200 to H.S.), Wuhan University, Undergraduate Training Programs for Innovation and Entrepreneurship of Wuhan University to Y.L., the Science and Technology Commission of Shanghai, and the National Natural Science Foundation of China (31900033, 21ZR1433700). The authors thank staff from BL19U1 beamline at Shanghai Synchrotron Radiation Facility (SSRF), China, for their assistance in X-ray crystal data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wupeng Yan or Heng Song.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1755_MOESM1_ESM.docx

Regulation of P450 TleB Catalytic Flow for the Synthesis of Sulfur-Containing Indole Alkaloids by Substrate Structure-Directed Strategy and Protein Engineering, approximately 27.9 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, X., Long, Y., Wang, J. et al. Regulation of P450 TleB catalytic flow for the synthesis of sulfur-containing indole alkaloids by substrate structure-directed strategy and protein engineering. Sci. China Chem. 66, 3232–3241 (2023). https://doi.org/10.1007/s11426-023-1755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1755-4

Navigation