Skip to main content
Log in

Facile access to C-N bonds via unexpected side reactions of Knoevenagel condensation and their application in high-efficiency organic solar cells

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The construction of C-N bonds is of great importance in the fields of biology, medicine, chemistry and materials science. Here, the replacement of organic base from pyridine to piperidine in the Knoevenagel condensation process unexpectedly yields a series of novel organic molecules containing C-N bonds. Interestingly, the synthesis method does not require any external transition-metals catalysis, and photo-/electro-catalysis. Additionally, when the new compound 1b is added as a third component to a well-known binary system of PM6:Y6, the efficiency of the organic solar cell is significantly improved, resulting in an outstanding efficiency of 18.0%, which is one of the highest values reported to date for PM6:Y6-based ternary organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wołos A, Roszak R, Żądło-Dobrowolska A, Beker W, Mikulak-Klucznik B, Spólnik G, Dygas M, Szymkuć S, Grzybowski BA. Science, 2020, 369: eaaw1955

    Article  PubMed  Google Scholar 

  2. Thorpe TW, Marshall JR, Harawa V, Ruscoe RE, Cuetos A, Finnigan JD, Angelastro A, Heath RS, Parmeggiani F, Charnock SJ, Howard RM, Kumar R, Daniels DSB, Grogan G, Turner NJ. Nature, 2022, 604: 86–91

    Article  CAS  PubMed  Google Scholar 

  3. Jiang Q, Tong J, Xian Y, Kerner RA, Dunfield SP, Xiao C, Scheidt RA, Kuciauskas D, Wang X, Hautzinger MP, Tirawat R, Beard MC, Fenning DP, Berry JJ, Larson BW, Yan Y, Zhu K. Nature, 2022, 611: 278–283

    Article  CAS  PubMed  Google Scholar 

  4. Yan P, Yang D, Wang H, Yang S, Ge Z. Energy Environ Sci, 2022, 15: 3630–3669

    Article  CAS  Google Scholar 

  5. Xiong T, Zhang Q. Chem Soc Rev, 2016, 45: 3069–3087

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Y, Xia W. Chem Soc Rev, 2018, 47: 2591–2608

    Article  CAS  PubMed  Google Scholar 

  7. Dagar N, Sen PP, Roy SR. ChemSusChem, 2021, 14: 1229–1257

    Article  CAS  PubMed  Google Scholar 

  8. Ullmann F. Ber Dtsch Chem Ges, 1903, 36: 2382–2384

    Article  Google Scholar 

  9. Guram AS, Buchwald SL. J Am Chem Soc, 1994, 116: 7901–7902

    Article  CAS  Google Scholar 

  10. Paul F, Patt J, Hartwig JF. J Am Chem Soc, 1994, 116: 5969–5970

    Article  CAS  Google Scholar 

  11. Liu ZS, Xie PP, Hua Y, Wu C, Ma Y, Chen J, Cheng HG, Hong X, Zhou Q. Chem, 2021, 7: 1917–1932

    Article  CAS  Google Scholar 

  12. Wang C, Wu Y, Bodach A, Krebs ML, Schuhmann W, Schüth F. Angew Chem, 2023, 135: e202215804

    Article  Google Scholar 

  13. Zhang D, Yuan X, Gong C, Zhang X. J Am Chem Soc, 2022, 144: 16184–16190

    Article  CAS  PubMed  Google Scholar 

  14. Sil S, Santha Bhaskaran A, Chakraborty S, Singh B, Kuniyil R, Mandal SK. J Am Chem Soc, 2022, 144: 22611–22621

    Article  CAS  PubMed  Google Scholar 

  15. Knoevenagel E. Ber Dtsch Chem Ges, 1894, 27: 2345–2346

    Article  Google Scholar 

  16. Gasparini N, Salleo A, McCulloch I, Baran D. Nat Rev Mater, 2019, 4: 229–242

    Article  Google Scholar 

  17. Yao H, Hou J. Angew Chem Int Ed, 2022, 61: e202209021

    Article  CAS  Google Scholar 

  18. Ge J, Xie L, Peng R, Ge Z. Adv Mater, 2023, 35: 2206566

    Article  CAS  Google Scholar 

  19. Yang D, Yu K, Xu J, Zhang J, Zhang J, Gao J, Song W, Li D, Chen Z, Ge Z. J Mater Chem A, 2021, 9: 10427–10436

    Article  CAS  Google Scholar 

  20. Ge J, Hong L, Ma H, Ye Q, Chen Y, Xie L, Song W, Li D, Chen Z, Yu K, Zhang J, Wei Z, Huang F, Ge Z. Adv Mater, 2022, 34: 2202752

    Article  CAS  Google Scholar 

  21. Xu J, Zhang J, Yang D, Yu K, Li D, Xia Z, Ge Z. Chin Chem Lett, 2022, 33: 247–251

    Article  CAS  Google Scholar 

  22. Yang J, Liu B, Lee J-, Wang Y, Sun H, Chen Z, Bai Q, Kim BJ, Jiang Y, Niu L, Guo X. Chin J Chem, 2022, 40: 2900–2908

    Article  CAS  Google Scholar 

  23. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat Energy, 2021, 6: 605–613

    Article  CAS  Google Scholar 

  24. Xie L, Zhang J, Song W, Ge J, Li D, Zhou R, Zhang J, Zhang X, Yang D, Tang B, Wu T, Ge Z. Nano Energy, 2022, 99: 107414

    Article  CAS  Google Scholar 

  25. Bai Q, Liang Q, Li H, Sun H, Guo X, Niu L. Aggregate, 2022, 3: 281

    Article  Google Scholar 

  26. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  27. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  28. Yang D, Yang Q, Yang L, Luo Q, Chen Y, Zhu Y, Huang Y, Lu Z, Zhao S. Chem Commun, 2014, 50: 9346–9348

    Article  CAS  Google Scholar 

  29. Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. Adv Mater, 2019, 31: 1902210

    Article  Google Scholar 

  30. Xie L, Lan A, Gu Q, Yang S, Song W, Ge J, Zhou R, Chen Z, Zhang J, Zhang X, Yang D, Tang B, Wu T, Ge Z. ACS Energy Lett, 2023, 8: 361–371

    Article  CAS  Google Scholar 

  31. Mahmood A, Wang JL. Energy Environ Sci, 2021, 14: 90–105

    Article  CAS  Google Scholar 

  32. Riede M, Spoltore D, Leo K. Adv Energy Mater, 2021, 11: 2002653

    Article  CAS  Google Scholar 

  33. Song W, Yu K, Ge J, Xie L, Zhou R, Peng R, Zhang X, Yang M, Wei Z, Ge Z. Matter, 2022, 5: 1877–1889

    Article  CAS  Google Scholar 

  34. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 224–268

    Article  CAS  Google Scholar 

  35. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Liu Y, Meng L, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 1457–1497

    Article  CAS  Google Scholar 

  36. Li B, Zhang X, Wu Z, Yang J, Liu B, Liao Q, Wang J, Feng K, Chen R, Woo HY, Ye F, Niu L, Guo X, Sun H. Sci China Chem, 2022, 65: 1157–1163

    Article  CAS  Google Scholar 

  37. Doumon NY, Yang L, Rosei F. Nano Energy, 2022, 94: 106915

    Article  CAS  Google Scholar 

  38. Chen Z, Zhu J, Yang D, Song W, Shi J, Ge J, Guo Y, Tong X, Chen F, Ge Z. Energy Environ Sci, 2023, 16: 3119–3127

    Article  CAS  Google Scholar 

  39. Guo Q, Guo Q, Geng Y, Tang A, Zhang M, Du M, Sun X, Zhou E. Mater Chem Front, 2021, 5: 3257–3280

    Article  CAS  Google Scholar 

  40. Wang H, Yang D, Ding P, Xie L, Yang S, Yan P, Meng Y, Zhang J, Wei Z, Ge Z. Chem Eng J, 2023, 474: 145395

    Article  CAS  Google Scholar 

  41. Huang JS, Goh T, Li X, Sfeir MY, Bielinski EA, Tomasulo S, Lee ML, Hazari N, Taylor AD. Nat Photon, 2013, 7: 479–485

    Article  CAS  Google Scholar 

  42. Mohapatra AA, Tiwari V, Patil S. Energy Environ Sci, 2021, 14: 302–319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U21A20331), the National Science Fund for Distinguished Young Scholars (21925506), and the Zhejiang Provincial Natural Science Foundation of China (LQ22E030013). We thank Prof. Bijin Li (School of Pharmaceutical Sciences, Chongqing University) and Prof. Tao Xiong (Department of Chemistry, Northeast Normal University) for the friendly discussion on the mechanism of C-N bond formation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daobin Yang or Ziyi Ge.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2023_1752_MOESM1_ESM.docx

Facile access to C-N bonds via unexpected side reactions of Knoevenagel condensation and their high efficiency organic solar cells

Supplementary material, approximately 870 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Yang, S., Wang, H. et al. Facile access to C-N bonds via unexpected side reactions of Knoevenagel condensation and their application in high-efficiency organic solar cells. Sci. China Chem. 67, 323–329 (2024). https://doi.org/10.1007/s11426-023-1752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1752-3

Navigation