Skip to main content
Log in

Metal-free synthesis of nitriles from aldehydes and ammonium by visible-light photocatalysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A green method for synthesis of nitriles from aldehydes and ammonium salts under air is developed under extremely mild conditions, i.e., 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as a photocatalyst, 2,2,6,6-tetrametylpiperidine-1-oxyl (TEMPO) as a cocatalyst, and oxygen (ambient air) as the terminal oxidant, visible light irradiation of substrate solutions, producing the desired nitriles with excellent yields. The reaction involves two distinct transformations, imine formation between an aldehyde and an ammonium salt and photocatalytic oxidation of the formed imine by air to a nitrile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller JS, Manson JL. Acc Chem Res, 2001, 34: 563–570

    Article  CAS  PubMed  Google Scholar 

  2. Fleming FF. Nat Prod Rep, 1999, 16: 597–606

    Article  CAS  Google Scholar 

  3. Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J Med Chem, 2010, 53: 7902–7917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murphy ST, Case HL, Ellsworth E, Hagen S, Huband M, Joannides T, Limberakis C, Marotti KR, Ottolini AM, Rauckhorst M, Starr J, Stier M, Taylor C, Zhu T, Blaser A, Denny WA, Lu GL, Smaill JB, Rivault F. Bioorg Med Chem Lett, 2007, 17: 2150–2155

    Article  CAS  PubMed  Google Scholar 

  5. Rappoport Z. Chemistry of the Cyano Group. Hoboken: John Wiley & Sons, 1970

    Google Scholar 

  6. Finholt AE, Jacobson EC, Ogard AE, Thompson P. J Am Chem Soc, 1955, 77: 4163

    Article  CAS  Google Scholar 

  7. Gould F, Johnson G, Ferris A. J Org Chem, 1960, 25: 1658–1660

    Article  CAS  Google Scholar 

  8. Michelin RA, Mozzon M, Bertani R. Coord Chem Rev, 1996, 147: 299–338

    Article  CAS  Google Scholar 

  9. Polshettiwar V, Varma RS. Chem Eur J, 2009, 15: 1582–1586

    Article  CAS  PubMed  Google Scholar 

  10. Allen CL, Williams JMJ. Chem Soc Rev, 2011, 40: 3405–3415

    Article  CAS  PubMed  Google Scholar 

  11. Schmid TE, Gómez-Herrera A, Songis O, Sneddon D, Révolte A, Nahra F, Cazin CSJ. Catal Sci Technol, 2015, 5: 2865–2868

    Article  CAS  Google Scholar 

  12. Raj J, Singh N, Prasad S, Seth A, Bhalla T. Acta Microbiologica Immunologica Hungarica, 2007, 54: 79–88

    Article  CAS  Google Scholar 

  13. Movassaghi M, Hill MD. Nat Protoc, 2007, 2: 2018–2023

    Article  CAS  PubMed  Google Scholar 

  14. Das B, Reddy C, Kumar D, Krishnaiah M, Narender R. Synlett, 2010, 3: 391–394

    Article  Google Scholar 

  15. Yang J, Karver MR, Li W, Sahu S, Devaraj NK. Angew Chem Int Ed, 2012, 51: 5222–5225

    Article  CAS  Google Scholar 

  16. Sandmeyer T. Ber Dtsch Chem Ges, 1884, 17: 1633–1635

    Article  Google Scholar 

  17. Hodgson HH. Chem Rev, 1947, 40: 251–277

    Article  CAS  PubMed  Google Scholar 

  18. Kim DW, Song CE, Chi DY. J Org Chem, 2003, 68: 4281–4285

    Article  CAS  PubMed  Google Scholar 

  19. Beletskaya IP, Sigeev AS, Peregudov AS, Petrovskii PV. J Organomet Chem, 2004, 689: 3810–3812

    Article  CAS  Google Scholar 

  20. Rosenmund KW, Struck E. Ber dtsch Chem Ges A B, 1919, 52: 1749–1756

    Article  Google Scholar 

  21. von Braun J, Manz G. Justus Liebigs Ann Chem, 1931, 488: 111–126

    Article  Google Scholar 

  22. Patil RD, Gupta MK. Adv Synth Catal, 2020, 362: 3987–4009

    Article  CAS  Google Scholar 

  23. Achard T, Egly J, Sigrist M, Maisse-François A, Bellemin-Laponnaz S. Chem Eur J, 2019, 25: 13271–13274

    Article  CAS  PubMed  Google Scholar 

  24. Kim J, Golime G, Kim HY, Oh K. Asian J Org Chem, 2019, 8: 1674–1679

    Article  CAS  Google Scholar 

  25. Jia X, Ma J, Xia F, Gao M, Gao J, Xu J. Nat Commun, 2019, 10: 2338

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gan L, Jia X, Fang H, Liu G, Huang Z. ChemCatChem, 2020, 12: 3661–3665

    Article  CAS  Google Scholar 

  27. Yang SH, Chang S. Org Lett, 2001, 3: 4209–4211

    Article  CAS  PubMed  Google Scholar 

  28. Yan G, Zhang Y, Wang J. Adv Synth Catal, 2017, 359: 4068–4105

    Article  CAS  Google Scholar 

  29. Wang H, Dong Y, Zheng C, Sandoval CA, Wang X, Makha M, Li Y. Chem, 2018, 4: 2883–2893

    Article  CAS  Google Scholar 

  30. Plass C, Hinzmann A, Terhorst M, Brauer W, Oike K, Yavuzer H, Asano Y, Vorholt AJ, Betke T, Gröger H. ACS Catal, 2019, 9: 5198–5203

    Article  CAS  Google Scholar 

  31. Wang Y, Furukawa S, Yan N. ACS Catal, 2019, 9: 6681–6691

    Article  Google Scholar 

  32. Wang Y, Furukawa S, Zhang Z, Torrente-Murciano L, Khan SA, Yan N. Catal Sci Technol, 2019, 9: 86–96

    Article  CAS  Google Scholar 

  33. Hyodo K, Togashi K, Oishi N, Hasegawa G, Uchida K. Org Lett, 2017, 19: 3005–3008

    Article  CAS  PubMed  Google Scholar 

  34. Preger Y, Root TW, Stahl SS. ACS Omega, 2018, 3: 6091–6096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xian C, He J, He Y, Nie J, Yuan Z, Sun J, Martens WN, Qin J, Zhu HY, Zhang Z. J Am Chem Soc, 2022, 144: 23321–23331

    Article  CAS  PubMed  Google Scholar 

  36. Ge JJ, Yao CZ, Wang MM, Zheng HX, Kang YB, Li Y. Org Lett, 2016, 18: 228–231

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Xu D, Guan E, Wang L, Zhang J, Wang C, Wang S, Xu H, Meng X, Yang B, Gates BC, Xiao FS. ACS Catal, 2020, 10: 6299–6308

    Article  CAS  Google Scholar 

  38. Wang Y, Furukawa S, Fu X, Yan N. ACS Catal, 2020, 10: 311–335

    Article  Google Scholar 

  39. Chen X, Song S, Li H, Gözaydιn G, Yan N. Acc Chem Res, 2021, 54: 1711–1722

    Article  CAS  PubMed  Google Scholar 

  40. Wu X, Luo N, Xie S, Zhang H, Zhang Q, Wang F, Wang Y. Chem Soc Rev, 2020, 49: 6198–6223

    Article  CAS  PubMed  Google Scholar 

  41. Rajender Reddy K, Uma Maheswari C, Venkateshwar M, Prashanthi S, Lakshmi Kantam M. Tetrahedron Lett, 2009, 50: 2050–2053

    Article  CAS  Google Scholar 

  42. Waldvogel SR. Synthesis, 2010, 5: 892

    Article  Google Scholar 

  43. Pradal A, Evano G. Chem Commun, 2014, 50: 11907–11910

    Article  CAS  Google Scholar 

  44. Oishi T, Yamaguchi K, Mizuno N. Angew Chem Int Ed, 2009, 48: 6286–6288

    Article  CAS  Google Scholar 

  45. Oishi T, Yamaguchi K, Mizuno N. Top Catal, 2010, 53: 479–486

    Article  CAS  Google Scholar 

  46. Dornan LM, Cao Q, Flanagan JCA, Crawford JJ, Cook MJ, Muldoon MJ. Chem Commun, 2013, 49: 6030–6032

    Article  CAS  Google Scholar 

  47. Dighe SU, Chowdhury D, Batra S. Adv Synth Catal, 2014, 356: 3892–3896

    Article  CAS  Google Scholar 

  48. Kelly CB, Lambert KM, Mercadante MA, Ovian JM, Bailey WF, Leadbeater NE. Angew Chem Int Ed, 2015, 54: 4241–4245

    Article  CAS  Google Scholar 

  49. Noh JH, Kim J. J Org Chem, 2015, 80: 11624–11628

    Article  CAS  PubMed  Google Scholar 

  50. Tian X, Ren YL, Ren F, Cheng X, Zhao S, Wang J. Synlett, 2018, 29: 2444–2448

    Article  CAS  Google Scholar 

  51. Hua M, Song J, Huang X, Liu H, Fan H, Wang W, He Z, Liu Z, Han B. Angew Chem Int Ed, 2021, 60: 21479–21485

    Article  CAS  Google Scholar 

  52. Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen B, Wu LZ, Tung CH. Acc Chem Res, 2018, 51: 2512–2523

    Article  CAS  PubMed  Google Scholar 

  54. Song S, Qu J, Han P, Hülsey MJ, Zhang G, Wang Y, Wang S, Chen D, Lu J, Yan N. Nat Commun, 2020, 11: 4899–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nandi J, Leadbeater NE. Org Biomol Chem, 2019, 17: 9182–9186

    Article  CAS  PubMed  Google Scholar 

  56. Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075–10166

    Article  CAS  PubMed  Google Scholar 

  57. Liu H, Yan X, Chen W, Xie Z, Li S, Chen W, Zhang T, Xing G, Chen L. Sci China Chem, 2021, 64: 827–833

    Article  CAS  Google Scholar 

  58. Huang F, Wang Y, Dong X, Lang X. Sci China Chem, 2023, doi: https://doi.org/10.1007/s11426-023-1644-x

  59. Movassagh B, Shokri S. Tetrahedron Lett, 2005, 46: 6923–6925

    Article  CAS  Google Scholar 

  60. Khalafi-Nezhad A, Mohammadi S. RSC Adv, 2014, 4: 13782–13787

    Article  CAS  Google Scholar 

  61. Yu L, Li H, Zhang X, Ye J, Liu J, Xu Q, Lautens M. Org Lett, 2014, 16: 1346–1349

    Article  CAS  PubMed  Google Scholar 

  62. Zhang X, Sun J, Ding Y, Yu L. Org Lett, 2015, 17: 5840–5842

    Article  CAS  PubMed  Google Scholar 

  63. Ban YL, Dai JL, Jin XL, Zhang QB, Liu Q. Chem Commun, 2019, 55: 9701–9704

    Article  CAS  Google Scholar 

  64. Verma F, Shukla P, Bhardiya SR, Singh M, Rai A, Rai VK. Catal Commun, 2019, 119: 76–81

    Article  CAS  Google Scholar 

  65. Zhu C, Ji L, Wei Y. Synthesis, 2010, 18: 3121–3125

    Google Scholar 

  66. Veisi H. Synthesis, 2010, 15: 2631–2635

    Article  Google Scholar 

  67. Wang L, Shen C, Wang H, Zhou W, Sun F, He MY, Chen Q. J Chem Res, 2012, 36: 460–462

    Article  CAS  Google Scholar 

  68. Chen GM, Brown HC. J Am Chem Soc, 2000, 122: 4217–4218

    Article  CAS  Google Scholar 

  69. Lou S, Moquist PN, Schaus SE. J Am Chem Soc, 2007, 129: 15398–15404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luo J, Zhang J. ACS Catal, 2016, 6: 873–877

    Article  CAS  Google Scholar 

  71. Yang X, Fan Z, Shen Z, Li M. Electrochim Acta, 2017, 226: 53–59

    Article  CAS  Google Scholar 

  72. Chen Q, Fang C, Shen Z, Li M. Electrochem Commun, 2016, 64: 51–55

    Article  CAS  Google Scholar 

  73. Semmelhack MF, Schmid CR, Cortés DA. Tetrahedron Lett, 1986, 27: 1119–1122

    Article  CAS  Google Scholar 

  74. Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science, 2015, 349: 1326–1330

    Article  CAS  PubMed  Google Scholar 

  75. Hu XQ, Chen J, Chen JR, Yan DM, Xiao WJ. Chem Eur J, 2016, 22: 14141–14146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1500100, 2022YFA1502900), the National Natural Science Foundation of China (21933007, 22193013, 22088102), the Strategic Priority Research Program of the Chinese Academy of Science (XDB17000000) and New Cornerstone Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Chen or Li-Zhu Wu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zheng, YW., Chen, B. et al. Metal-free synthesis of nitriles from aldehydes and ammonium by visible-light photocatalysis. Sci. China Chem. 66, 2852–2857 (2023). https://doi.org/10.1007/s11426-023-1748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1748-4

Navigation