Skip to main content
Log in

Effect of substituents on self-assembling behaviors and charge transport properties of nonplanar heterocycloarenes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

(Hetero)cycloarenes possessing rigid molecular skeletons and large π-systems are the potential active materials in various electronic devices. However, the development of their organic electronics still lags far behind the synthetic chemistry. Herein, in order to bridge this gap, we reported the study of organic semiconductor materials based on heterocycloarenes in detail about the relationship between structure, properties, and device performance. Three varying straight alkyl chain substituted butterfly-shaped heterocycloarenes PTZs were strategically synthesized. Compared with bulky aryl(mesityl) substituted PTZ1, PTZs show additional self-assembly behavior. Concentration-dependent 1H NMR spectra indicated that the self-assembly behavior can be modulated by the alkyl chain length. Medium alkyl chain length substituted heterocycloarene PTZ-C6 showed the strongest association constants of 490 M−1 in solution, and a similar trend was also observed in solid state by thin film absorption spectra. Remarkably, despite the nonplanar conjugated backbones, solution-processing thin film transistor based on PTZ-C6 exhibits hole mobility up to 0.13 cm2 V−1 s−1 and considerable current on/off ratio of 105. Our study demonstrates that substituent engineering of heterocycloarenes is a powerful strategy for modulating self-assembling structures and promoting transistor device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diederich F, Staab HA. Angew Chem Int Ed, 1978, 17: 372–374

    Article  Google Scholar 

  2. Buttrick JC, King BT. Chem Soc Rev, 2017, 46: 7–20

    Article  CAS  PubMed  Google Scholar 

  3. Kumar B, Viboh RL, Bonifacio MC, Thompson WB, Buttrick JC, Westlake BC, Kim MS, Zoellner RW, Varganov SA, Mörschel P, Teteruk J, Schmidt MU, King BT. Angew Chem Int Ed, 2012, 51: 12795–12800

    Article  CAS  Google Scholar 

  4. Majewski MA, Hong Y, Lis T, Gregoliński J, Chmielewski PJ, Cybińska J, Kim D, Stępień M. Angew Chem Int Ed, 2016, 55: 14072–14076

    Article  CAS  Google Scholar 

  5. Fan W, Han Y, Wang X, Hou X, Wu J. J Am Chem Soc, 2021, 143: 13908–13916

    Article  CAS  PubMed  Google Scholar 

  6. Chang D, Zhu J, Sun Y, Chi K, Qiao Y, Wang T, Zhao Y, Liu Y, Lu X. Chem Sci, 2023, 14: 6087–6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang Y, Chu M, Miao Q. Org Lett, 2018, 20: 4259–4262

    Article  CAS  PubMed  Google Scholar 

  8. Zhao M, Pun SH, Gong Q, Miao Q. Angew Chem Int Ed, 2021, 60: 24124–24130

    Article  CAS  Google Scholar 

  9. Tatibouët A, Hancock R, Demeunynck M, Lhomme J. Angew Chem Int Ed, 1997, 36: 1190–1191

    Article  Google Scholar 

  10. Yang L, Zhang N, Han Y, Zou Y, Qiao Y, Chang D, Zhao Y, Lu X, Wu J, Liu Y. Chem Commun, 2020, 56: 9990–9993

    Article  CAS  Google Scholar 

  11. Zhang N, Yang L, Li W, Zhu J, Chi K, Chang D, Qiao Y, Wang T, Zhao Y, Lu X, Liu Y. J Am Chem Soc, 2022, 144: 21521–21529

    Article  CAS  PubMed  Google Scholar 

  12. Zhang N, Li W, Zhu J, Wang T, Zhang R, Chi K, Liu Y, Zhao Y, Lu X. Adv Mater, 2023, 35: 2300094

    Article  CAS  Google Scholar 

  13. Zhu J, Li W, Zhang N, An D, Zhao Y, Lu X, Liu Y. Chem Sci, 2022, 13: 11174–11182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gregolińska H, Majewski M, Chmielewski PJ, Gregoliński J, Chien A, Zhou J, Wu YL, Bae YJ, Wasielewski MR, Zimmerman PM, Stępień M. J Am Chem Soc, 2018, 140: 14474–14480

    Article  PubMed  Google Scholar 

  15. Prajapati B, Dang D, Chmielewski PJ, Majewski MA, Lis T, Gómez-García CJ, Zimmerman PM, Stępień M. Angew Chem Int Ed, 2021, 60: 22496–22504

    Article  CAS  Google Scholar 

  16. Lu X, An D, Han Y, Zou Y, Qiao Y, Zhang N, Chang D, Wu J, Liu Y. Chem Sci, 2021, 12: 3952–3957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu X, Gopalakrishna TY, Phan H, Herng TS, Jiang Q, Liu C, Li G, Ding J, Wu J. Angew Chem Int Ed, 2018, 57: 13052–13056

    Article  CAS  Google Scholar 

  18. Lu X, Gopalakrishna TY, Han Y, Ni Y, Zou Y, Wu J. J Am Chem Soc, 2019, 141: 5934–5941

    Article  CAS  PubMed  Google Scholar 

  19. Liu C, Sandoval-Salinas ME, Hong Y, Gopalakrishna TY, Phan H, Aratani N, Herng TS, Ding J, Yamada H, Kim D, Casanova D, Wu J. Chem, 2018, 4: 1586–1595

    Article  CAS  Google Scholar 

  20. Zhang L, Colella NS, Liu F, Trahan S, Baral JK, Winter HH, Mannsfeld SCB, Briseno AL. J Am Chem Soc, 2013, 135: 844–854

    Article  CAS  PubMed  Google Scholar 

  21. Osaka I, Zhang R, Sauvé G, Smilgies DM, Kowalewski T, McCullough RD. J Am Chem Soc, 2009, 131: 2521–2529

    Article  CAS  PubMed  Google Scholar 

  22. Izawa T, Miyazaki E, Takimiya K. Adv Mater, 2008, 20: 3388–3392

    Article  CAS  Google Scholar 

  23. Cabanetos C, El Labban A, Bartelt JA, Douglas JD, Mateker WR, Fréchet JMJ, McGehee MD, Beaujuge PM. J Am Chem Soc, 2013, 135: 4656–4659

    Article  CAS  PubMed  Google Scholar 

  24. Qiao Y, Yang L, Zhu J, Yan C, Chang D, Zhang N, Zhou G, Zhao Y, Lu X, Liu Y. J Am Chem Soc, 2021, 143: 11088–11101

    Article  CAS  PubMed  Google Scholar 

  25. Back JY, An TK, Cheon YR, Cha H, Jang J, Kim Y, Baek Y, Chung DS, Kwon SK, Park CE, Kim YH. ACS Appl Mater Interfaces, 2015, 7: 351–358

    Article  CAS  PubMed  Google Scholar 

  26. Martin RB. Chem Rev, 1996, 96: 3043–3064

    Article  CAS  PubMed  Google Scholar 

  27. Chen Z, Lohr A, Saha-Möller CR, Würthner F. Chem Soc Rev, 2009, 38: 564–584

    Article  CAS  PubMed  Google Scholar 

  28. Mao L, Hu Y, Tu Q, Jiang WL, Zhao XL, Wang W, Yuan D, Wen J, Shi X. Nat Commun, 2020, 11: 5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Zeng S, Yin L, Ji C, Li K, Li Y, Wang Y. New J Chem, 2013, 37: 632–639

    Article  CAS  Google Scholar 

  30. Liu G, Xiao C, Negri F, Li Y, Wang Z. Angew Chem Int Ed, 2020, 59: 2008–2012

    Article  CAS  Google Scholar 

  31. Zhang L, Sun R, Zhang Z, Zhang J, Zhu Q, Ma W, Min J, Wei Z, Deng D. Adv Mater, 2022, 34: 2207020

    Article  CAS  Google Scholar 

  32. Vegiraju S, He GY, Kim C, Priyanka P, Chiu YJ, Liu CW, Huang CY, Ni JS, Wu YW, Chen Z, Lee GH, Tung SH, Liu CL, Chen MC, Facchetti A. Adv Funct Mater, 2017, 27: 1606761

    Article  Google Scholar 

  33. Yamaguchi Y, Kojiguchi Y, Kawata S, Mori T, Okamoto K, Tsutsui M, Koganezawa T, Katagiri H, Yasuda T. Chem Mater, 2020, 32: 5350–5360

    Article  CAS  Google Scholar 

  34. Becke AD. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  36. Yanai T, Tew DP, Handy NC. Chem Phys Lett, 2004, 393: 51–57

    Article  CAS  Google Scholar 

  37. Ditchfield R, Hehre WJ, Pople JA. J Chem Phys, 1971, 54: 724–728

    Article  CAS  Google Scholar 

  38. Hehre WJ, Ditchfield R, Pople JA. J Chem Phys, 1972, 56: 2257–2261

    Article  CAS  Google Scholar 

  39. Hariharan PC, Pople JA. Theoret Chim Acta, 1973, 28: 213–222

    Article  CAS  Google Scholar 

  40. Facchetti A. Mater Today, 2007, 10: 28–37

    Article  CAS  Google Scholar 

  41. Wu J, Fechtenkötter A, Gauss J, Watson MD, Kastler M, Fechtenkötter C, Wagner M, Müllen K. J Am Chem Soc, 2004, 126: 11311–11321

    Article  CAS  PubMed  Google Scholar 

  42. Schwab MG, Qin T, Pisula W, Mavrinskiy A, Feng X, Baumgarten M, Kim H, Laquai F, Schuh S, Trattnig R W. List EJ, Müllen K. Chem Asian J, 2011, 6: 3001–3010

    Article  CAS  PubMed  Google Scholar 

  43. He Z, Xu X, Zheng X, Ming T, Miao Q. Chem Sci, 2013, 4: 4525–4531

    Article  CAS  Google Scholar 

  44. Bayer J, Huhn T. J Org Chem, 2022, 87: 5257–5278

    Article  CAS  PubMed  Google Scholar 

  45. Gu PY, Zhang J, Long G, Wang Z, Zhang Q. J Mater Chem C, 2016, 4: 3809–3814

    Article  CAS  Google Scholar 

  46. Yi Z, Sun X, Zhao Y, Guo Y, Chen X, Qin J, Yu G, Liu Y. Chem Mater, 2012, 24: 4350–4356

    Article  CAS  Google Scholar 

  47. Liu Q, Kumagai S, Manzhos S, Chen Y, Angunawela I, Nahid MM, Feron K, Bottle SE, Bell J, Ade H, Takeya J, Sonar P. Adv Funct Mater, 2020, 30: 2000489

    Article  CAS  Google Scholar 

  48. Sun B, Hong W, Yan Z, Aziz H, Li Y. Adv Mater, 2014, 26: 2636–2642

    Article  CAS  PubMed  Google Scholar 

  49. Chen CA, Yang PC, Wang SC, Tung SH, Su WF. Macromolecules, 2018, 51: 7828–7835

    Article  CAS  Google Scholar 

  50. Khatun MN, Dey A, Meher N, Iyer PK. ACS Appl Electron Mater, 2021, 3: 3575–3587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52073063, 61890940), the National Key R&D Program of China (2018YFA0703200), the Natural Science Foundation of Shanghai (22ZR1405800 and 23ZR1405100), the Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhao, Xuefeng Lu or Yunqi Liu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Li, W., Zhang, R. et al. Effect of substituents on self-assembling behaviors and charge transport properties of nonplanar heterocycloarenes. Sci. China Chem. 66, 2903–2911 (2023). https://doi.org/10.1007/s11426-023-1743-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1743-4

Navigation