Skip to main content
Log in

Asymmetric reversible structural switching of a diene coordination polymer promoted by UV-visible light

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In natural and artificial systems, reversible reactions are commonly asymmetric with respect to the time scale and nature of the stimuli which drive the forward and backward processes. In applications for which switching behavior is required, it is desirable that the reversible reaction goes as close to symmetric as possible; however, such systems are uncommon. Herein, we report an example of ultraviolet (UV)-visible light-regulated asymmetric reversible structural switching involving a diene-based coordination polymer, CP1 and its monocyclobutane product, CP1a. It is possible to cycle at least ten times through a forward [2 + 2] photocycloaddition reaction and the reverse, photocleavage reaction. A single cycle can be completed within a few minutes. The transformation is accompanied by fast and distinct fluorescence changes, arising from optimisation of the reaction conditions. Density functional theory calculations allow rationalisation of the asymmetric reversible transformation between CP1 and CP1a rather than between CP1 and its dicyclobutane product CP1b. This work provides a clear illustration of reversible structural switching which approaches symmetric behaviour with respect to reaction rate and stimuli. The insights gained from this work also assist in the design of fast, reversible switching materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McConnell AJ, Wood CS, Neelakandan PP, Nitschke JR. Chem Rev, 2015, 115: 7729–7793

    Article  PubMed  CAS  Google Scholar 

  2. Grzelczak M, Liz-Marzán LM, Klajn R. Chem Soc Rev, 2019, 48: 1342–1361

    Article  PubMed  CAS  Google Scholar 

  3. Su X, Aprahamian I. Chem Soc Rev, 2014, 43: 1963–1981

    Article  PubMed  CAS  Google Scholar 

  4. Yang YW, Sun YL, Song N. Acc Chem Res, 2014, 47: 1950–1960

    Article  PubMed  CAS  Google Scholar 

  5. Bigdeli F, Lollar CT, Morsali A, Zhou HC. Angew Chem Int Ed, 2020, 59: 4652–4669

    Article  CAS  Google Scholar 

  6. Bruns CJ, Stoddart JF. Acc Chem Res, 2014, 47: 2186–2199

    Article  PubMed  CAS  Google Scholar 

  7. Suo Y, Hu H, Liu J. Int J Energy Res, 2021, 45: 9667–9676

    Article  CAS  Google Scholar 

  8. Zhang S, Bao M, Arisawa M, Yamaguchi M. Int J Mol Sci, 2023, 24: 693

    Article  Google Scholar 

  9. Dang LL, Zhang TT, Chen T, Zhao Y, Gao X, Aznarez F, Ma LF, Jin GX. Angew Chem Int Ed, 2023, 62: e202301516

    Article  CAS  Google Scholar 

  10. Zhang HN, Feng HJ, Lin YJ, Jin GX. J Am Chem Soc, 2023, 145: 4746–4756

    Article  PubMed  CAS  Google Scholar 

  11. Gao WX, Feng HJ, Guo BB, Lu Y, Jin GX. Chem Rev, 2020, 120: 6288–6325

    Article  PubMed  CAS  Google Scholar 

  12. Versteeg GF, Kuipers JAM, Van Beckum FPH, Van Swaaij WPM. Chem Eng Sci, 1989, 44: 2295–2310

    Article  CAS  Google Scholar 

  13. Razdan NK, Lin TC, Bhan A. Chem Rev, 2023, 123: 2950–3006

    Article  PubMed  CAS  Google Scholar 

  14. Oshanin G, Burlatsky SF, Mogutov A, Moreau M. J Mol Liquids, 1995, 63: 175–197

    Article  CAS  Google Scholar 

  15. Messersmith SJ. J Chem Educ, 2014, 91: 1498–1500

    Article  CAS  Google Scholar 

  16. Yen A, Koo YEL, Kopelman R. Phys Rev E, 1996, 54: 2447–2450

    Article  ADS  CAS  Google Scholar 

  17. Russew MM, Hecht S. Adv Mater, 2010, 22: 3348–3360

    Article  PubMed  CAS  Google Scholar 

  18. Tian H, Yang S. Chem Soc Rev, 2004, 33: 85–97

    Article  PubMed  CAS  Google Scholar 

  19. Zhang L, Wang HX, Li S, Liu M. Chem Soc Rev, 2020, 49: 9095–9120

    Article  PubMed  CAS  Google Scholar 

  20. Sun JK, Cai LX, Chen YJ, Li ZH, Zhang J. Chem Commun, 2011, 47: 6870–6872

    Article  CAS  Google Scholar 

  21. Luo F, Fan CB, Luo MB, Wu XL, Zhu Y, Pu SZ, Xu WY, Guo GC. Angew Chem Int Ed, 2014, 53: 9298–9301

    Article  CAS  Google Scholar 

  22. Healey K, Liang W, Southon PD, Church TL, D’Alessandro DM. J Mater Chem A, 2016, 4: 10816–10819

    Article  CAS  Google Scholar 

  23. Zhang F, Zou X, Feng W, Zhao X, Jing X, Sun F, Ren H, Zhu G. J Mater Chem, 2012, 22: 25019–25026

    Article  CAS  Google Scholar 

  24. Wang Z, Knebel A, Grosjean S, Wagner D, Bräse S, Wöll C, Caro J, Heinke L. Nat Commun, 2016, 7: 13872

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  25. Lyndon R, Konstas K, Ladewig BP, Southon PD, Kepert PCJ, Hill MR. Angew Chem Int Ed, 2013, 52: 3695–3698

    Article  CAS  Google Scholar 

  26. Yanai N, Uemura T, Inoue M, Matsuda R, Fukushima T, Tsujimoto M, Isoda S, Kitagawa S. J Am Chem Soc, 2012, 134: 4501–4504

    Article  PubMed  CAS  Google Scholar 

  27. Furlong BJ, Katz MJ. J Am Chem Soc, 2017, 139: 13280–13283

    Article  PubMed  CAS  Google Scholar 

  28. Wang X, Chi C, Zhang K, Qian Y, Gupta KM, Kang Z, Jiang J, Zhao D. Nat Commun, 2017, 8: 14460

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  29. Ogihara N, Ohba N, Kishida Y. Sci Adv, 2017, 3: e1603103

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  30. Li NY, Liu D, Ren ZG, Lollar C, Lang JP, Zhou HC. Inorg Chem, 2018, 57: 849–856

    Article  PubMed  CAS  Google Scholar 

  31. Li NY, Liu D, Abrahams BF, Lang JP. Chem Commun, 2018, 54: 5831–5834

    Article  CAS  Google Scholar 

  32. Kole GK, Kojima T, Kawano M, Vittal JJ. Angew Chem Int Ed, 2014, 53: 2143–2146

    Article  CAS  Google Scholar 

  33. Li J, Long X, Cao J, Hu Y. Chem Eng J, 2023, 451: 138779

    Article  CAS  Google Scholar 

  34. Lincoln R, Zhang W, Lovell TC, Jodko-Piórecka K, Devlaminck PA, Sakaya A, Van Kessel A, Cosa G. ACS Sens, 2022, 7: 166–174

    Article  PubMed  CAS  Google Scholar 

  35. Hu D, Huang H, Li R, Yuan J, Wei Y. Sci China Chem, 2022, 65: 1532–1537

    Article  CAS  Google Scholar 

  36. Zhang HN, Lin YJ, Jin GX. J Am Chem Soc, 2021, 143: 1119–1125

    Article  PubMed  CAS  Google Scholar 

  37. Seki K, Kitahara K. J Mol Liquids, 1995, 65–66: 293–296

    Article  Google Scholar 

  38. Agmon N, Gopich IV. Chem Phys Lett, 1999, 302: 399–404

    Article  ADS  CAS  Google Scholar 

  39. Li FF, Zhang L, Gong LL, Yan CS, Gao HY, Luo F. Dalton Trans, 2017, 46: 338–341

    Article  PubMed  CAS  Google Scholar 

  40. Yang XD, Ma MJ, Pang XZ, Chen YR, Rooney D, Zhang J. Chem Commun, 2020, 56: 4126–4129

    Article  CAS  Google Scholar 

  41. Sherman DA, Murase R, Duyker SG, Gu Q, Lewis W, Lu T, Liu Y, D’Alessandro DM. Nat Commun, 2020, 11: 2808

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  42. Sima JY, Li HX, Young DJ, Braunstein P, Lang JP. Chem Commun, 2019, 55: 3532–3535

    Article  CAS  Google Scholar 

  43. Dutta B, Dey A, Sinha C, Ray PP, Mir MH. Inorg Chem, 2019, 58: 5419–5422

    Article  PubMed  CAS  Google Scholar 

  44. Hu FL, Wang HF, Guo D, Zhang H, Lang JP, Beves JE. Chem Commun, 2016, 52: 7990–7993

    Article  CAS  Google Scholar 

  45. Wang LF, Lv BH, Wu FT, Huang GZ, Ruan ZY, Chen YC, Liu M, Ni ZP, Tong ML. Sci China Chem, 2022, 65: 120–127

    Article  CAS  Google Scholar 

  46. Park IH, Chanthapally A, Zhang Z, Lee SS, Zaworotko MJ, Vittal JJ. Angew Chem Int Ed, 2014, 53: 414–419

    Article  CAS  Google Scholar 

  47. Pahari G, Bhattacharya B, Reddy CM, Ghoshal D. Chem Commun, 2019, 55: 12515–12518

    Article  CAS  Google Scholar 

  48. Mir MH, Bera S, Khan S, Maity S, Sinha C, Dutta B. Chem Commun, 2021, 57: 6197–6200

    Article  CAS  Google Scholar 

  49. Han YF, Jin GX, Daniliuc CG, Hahn FE. Angew Chem Int Ed, 2015, 54: 4958–4962

    Article  CAS  Google Scholar 

  50. Schmidt GMJ. Pure Appl Chem, 1971, 27: 647–678

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22271203), the State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry (KF2021005), the Collaborative Innovation Center of Suzhou Nano Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201905). We are grateful to the useful comments of the editor and the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Liu or Jian-Ping Lang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Q., Cao, YY. et al. Asymmetric reversible structural switching of a diene coordination polymer promoted by UV-visible light. Sci. China Chem. 67, 536–541 (2024). https://doi.org/10.1007/s11426-023-1740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1740-2

Navigation