Skip to main content
Log in

Bisulfite-free mapping of DNA cytosine modifications: challenges and perspectives

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The mapping of DNA cytosine modifications is crucial for understanding the dynamic landscape of epigenetic regulation. While bisulfite sequencing has been the gold standard for decades, it suffers from limitations such as DNA degradation and low library quality due to harsh chemical treatment. In recent years, bisulfite-free methods have emerged as promising alternatives for detecting and quantifying DNA cytosine modifications. These methods employ enzymatic and chemical strategies to investigate cytosine modifications without the need for bisulfite treatment. This review provides an overview of the historical context of bisulfite-based methods and presents the current landscape of bisulfite-free methods. The advantages and limitations of each approach are discussed, along with insights into their applications. Furthermore, the review explores the existing challenges in the field and presents future perspectives and potential directions for advancing bisulfite-free mapping methods. The continued progress in bisulfite-free techniques holds great promise for unraveling the intricate nature of DNA cytosine modifications and their functional implications in diverse biological processes and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu T, Ma CJ, Yuan BF, Feng YQ. Sci China Chem, 2018, 61: 381–392

    Article  CAS  Google Scholar 

  2. Mattei AL, Bailly N, Meissner A. Trends Genet, 2022, 38: 676–707

    Article  CAS  PubMed  Google Scholar 

  3. Greenberg MVC, Bourc’his D. Nat Rev Mol Cell Biol, 2019, 20: 590–607

    Article  CAS  PubMed  Google Scholar 

  4. Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J, Klochendler A, Fox-Fisher I, Shabi-Porat S, Hecht M, Pelet T, Moss J, Drawshy Z, Amini H, Moradi P, Nagaraju S, Bauman D, Shveiky D, Porat S, Dior U, Rivkin G, Or O, Hirshoren N, Carmon E, Pikarsky A, Khalaileh A, Zamir G, Grinbaum R, Abu Gazala M, Mizrahi I, Shussman N, Korach A, Wald O, Izhar U, Erez E, Yutkin V, Samet Y, Rotnemer Golinkin D, Spalding KL, Druid H, Arner P, Shapiro AMJ, Grompe M, Aravanis A, Venn O, Jamshidi A, Shemer R, Dor Y, Glaser B, Kaplan T. Nature, 2023, 613: 355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Edwards JR, Yarychkivska O, Boulard M, Bestor TH. Epigenet Chromatin, 2017, 10: 23

    Article  Google Scholar 

  6. Kriaucionis S, Heintz N. Science, 2009, 324: 929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Science, 2009, 324: 930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL. Science, 2011, 333: 1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Science, 2011, 333: 1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pidugu LS, Dai Q, Malik SS, Pozharski E, Drohat AC. J Am Chem Soc, 2019, 141: 18851–18861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Su M, Kirchner A, Stazzoni S, Müller M, Wagner M, Schröder A, Carell T. Angew Chem Int Ed, 2016, 55: 11797–11800

    Article  CAS  Google Scholar 

  12. Zhu C, Gao Y, Guo H, Xia B, Song J, Wu X, Zeng H, Kee K, Tang F, Yi C. Cell Stem Cell, 2017, 20: 720–731.e5

    Article  CAS  PubMed  Google Scholar 

  13. Feng Y, Xie NB, Tao WB, Ding JH, You XJ, Ma CJ, Zhang X, Yi C, Zhou X, Yuan BF, Feng YQ. CCS Chem, 2021, 3: 994–1008

    Article  CAS  Google Scholar 

  14. Ibrahim J, Peeters M, Van Camp G, Op de Beeck K. Eur J Cancer, 2023, 178: 91–113

    Article  CAS  PubMed  Google Scholar 

  15. Kim H, Wang X, Jin P. J Genet Genomics, 2018, 45: 87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, Zuzarte PC, Borgida A, Wang TT, Li T, Kis O, Zhao Z, Spreafico A, Medina TS, Wang Y, Roulois D, Ettayebi I, Chen Z, Chow S, Murphy T, Arruda A, O’Kane GM, Liu J, Mansour M, McPherson JD, O’Brien C, Leighl N, Bedard PL, Fleshner N, Liu G, Minden MD, Gallinger S, Goldenberg A, Pugh TJ, Hoffman MM, Bratman SV, Hung RJ, De Carvalho DD. Nature, 2018, 563: 579–583

    Article  CAS  PubMed  Google Scholar 

  17. Zhao LY, Song J, Liu Y, Song CX, Yi C. Protein Cell, 2020, 11: 792–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka K, Okamoto A. Bioorg Med Chem Lett, 2007, 17: 1912–1915

    Article  CAS  PubMed  Google Scholar 

  19. Gouil Q, Keniry A. Essays Biochem, 2019, 63: 639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shapiro R, Servis RE, Welcher M. J Am Chem Soc, 2002, 92: 422–424

    Article  Google Scholar 

  21. Hayatsu H, Wataya Y, Kai K, Iida S. Biochemistry, 1970, 9: 2858–2865

    Article  CAS  PubMed  Google Scholar 

  22. Wang RYH, Gehrke CW, Ehrlich M. Nucl Acids Res, 1980, 8: 4777–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. Proc Natl Acad Sci USA, 1992, 89: 1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Nucleic Acids Res, 2005, 33: 5868–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Nature, 2009, 462: 315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B, Min JH, Jin P, Ren B, He C. Cell, 2012, 149: 1368–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S. Science, 2012, 336: 934–937

    Article  CAS  PubMed  Google Scholar 

  28. Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H, Gao J, Liu P, Li L, Xu GL, Jin P, He C. Cell, 2013, 153: 678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Booth MJ, Marsico G, Bachman M, Beraldi D, Balasubramanian S. Nat Chem, 2014, 6: 435–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu X, Song CX, Szulwach K, Wang Z, Weidenbacher P, Jin P, He C. J Am Chem Soc, 2013, 135: 9315–9317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu H, Wu X, Shen L, Zhang Y. Nat Biotechnol, 2014, 32: 1231–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Olova N, Krueger F, Andrews S, Oxley D, Berrens RV, Branco MR, Reik W. Genome Biol, 2018, 19: 33

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nair SS, Luu PL, Qu W, Maddugoda M, Huschtscha L, Reddel R, Chenevix-Trench G, Toso M, Kench JG, Horvath LG, Hayes VM, Stricker PD, Hughes TP, White DL, Rasko JEJ, Wong JJL, Clark SJ. Epigenet Chromatin, 2018, 11: 24

    Article  Google Scholar 

  34. Suzuki M, Liao W, Wos F, Johnston AD, DeGrazia J, Ishii J, Bloom T, Zody MC, Germer S, Greally JM. Genome Res, 2018, 28: 1364–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li QY, Yuan BF, Feng YQ. Chem Lett, 2018, 47: 1453–1459

    CAS  Google Scholar 

  36. Hofer A, Liu ZJ, Balasubramanian S. J Am Chem Soc, 2019, 141: 6420–6429

    Article  CAS  PubMed  Google Scholar 

  37. Tian T, Wang SR, Wu JG, Zhou X. Sci China Chem, 2011, 54: 1233–1243

    Article  CAS  Google Scholar 

  38. Wang P, Han P, Dong L, Miao X. Electrochem Commun, 2015, 61: 36–39

    Article  CAS  Google Scholar 

  39. Liu J, Yang W, Zhang X, Wang Y, Zhou X. Chem Commun, 2021, 57: 13796–13798

    Article  CAS  Google Scholar 

  40. Feng F, Wang H, Han L, Wang S. J Am Chem Soc, 2008, 130: 11338–11343

    Article  CAS  PubMed  Google Scholar 

  41. Hong T, Wang T, Guo P, Xing X, Ding F, Chen Y, Wu J, Ma J, Wu F, Zhou X. Anal Chem, 2013, 85: 10797–10802

    Article  CAS  PubMed  Google Scholar 

  42. Wang Z, Wang L, Zhang Q, Tang B, Zhang C. Chem Sci, 2018, 9: 1330–1338

    Article  CAS  PubMed  Google Scholar 

  43. Dai Y, Yuan BF, Feng YQ. RSC Chem Biol, 2021, 2: 1096–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J, Cigudosa JC, Huang TH, Esteller M. EMBO J, 2003, 22: 6335–6345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Serre D, Lee BH, Ting AH. Nucleic Acids Res, 2010, 38: 391–399

    Article  CAS  PubMed  Google Scholar 

  46. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y, Olshen A, Ballinger T, Zhou X, Forsberg KJ, Gu J, Echipare L, O’Geen H, Lister R, Pelizzola M, Xi Y, Epstein CB, Bernstein BE, Hawkins RD, Ren B, Chung WY, Gu H, Bock C, Gnirke A, Zhang MQ, Haussler D, Ecker JR, Li W, Farnham PJ, Waterland RA, Meissner A, Marra MA, Hirst M, Milosavljevic A, Costello JF. Nat Biotechnol, 2010, 28: 1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rajendram R, Ferreira JC, Grafodatskaya D, Choufani S, Chiang T, Pu S, Butcher DT, Wodak SJ, Weksberg R. Epigenetics, 2011, 6: 410–415

    Article  CAS  PubMed  Google Scholar 

  48. Nair SS, Coolen MW, Stirzaker C, Song JZ, Statham AL, Strbenac D, Robinson MD, Clark SJ. Epigenetics, 2011, 6: 34–44

    Article  CAS  PubMed  Google Scholar 

  49. Neary JL, Perez SM, Peterson K, Lodge DJ, Carless MA. Genomics, 2017, 109: 204–213

    Article  CAS  PubMed  Google Scholar 

  50. Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE. Genome Biol, 2011, 12: R54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shen L, Wu H, Diep D, Yamaguchi S, D’Alessio AC, Fung HL, Zhang K, Zhang Y. Cell, 2013, 153: 692–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen S, Petricca J, Ye W, Guan J, Zeng Y, Cheng N, Gong L, Shen SY, Hua JT, Crumbaker M, Fraser M, Liu S, Bratman SV, van der Kwast T, Pugh T, Joshua AM, De Carvalho DD, Chi KN, Awadalla P, Ji G, Feng F, Wyatt AW, He HH. Nat Commun, 2022, 13: 6467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nassiri F, Chakravarthy A, Feng S, Shen SY, Nejad R, Zuccato JA, Voisin MR, Patil V, Horbinski C, Aldape K, Zadeh G, De Carvalho DD. Nat Med, 2020, 26: 1044–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nuzzo PV, Berchuck JE, Korthauer K, Spisak S, Nassar AH, Abou Alaiwi S, Chakravarthy A, Shen SY, Bakouny Z, Boccardo F, Steinharter J, Bouchard G, Curran CR, Pan W, Baca SC, Seo JH, Lee GSM, Michaelson MD, Chang SL, Waikar SS, Sonpavde G, Irizarry RA, Pomerantz M, De Carvalho DD, Choueiri TK, Freedman ML. Nat Med, 2020, 26: 1041–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C. Nat Biotechnol, 2011, 29: 68–72

    Article  CAS  PubMed  Google Scholar 

  56. Han D, Lu X, Shih AH, Nie J, You Q, Xu MM, Melnick AM, Levine RL, He C. Mol Cell, 2016, 63: 711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li W, Zhang X, Lu X, You L, Song Y, Luo Z, Zhang J, Nie J, Zheng W, Xu D, Wang Y, Dong Y, Yu S, Hong J, Shi J, Hao H, Luo F, Hua L, Wang P, Qian X, Yuan F, Wei L, Cui M, Zhang T, Liao Q, Dai M, Liu Z, Chen G, Meckel K, Adhikari S, Jia G, Bissonnette MB, Zhang X, Zhao Y, Zhang W, He C, Liu J. Cell Res, 2017, 27: 1243–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang L, Szulwach KE, Hon GC, Song CX, Park B, Yu M, Lu X, Dai Q, Wang X, Street CR, Tan H, Min JH, Ren B, Jin P, He C. Nat Commun, 2013, 4: 1517

    Article  PubMed  Google Scholar 

  59. Hu L, Liu Y, Han S, Yang L, Cui X, Gao Y, Dai Q, Lu X, Kou X, Zhao Y, Sheng W, Gao S, He X, He C. J Am Chem Soc, 2019, 141: 8694–8697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu H, Wang Y, Zhou X. RSC Chem Biol, 2022, 3: 994–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJM, Haussler D, Marra MA, Hirst M, Wang T, Costello JF. Nature, 2010, 466: 253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xing X, Zhang B, Li D, Wang T. Comprehensive whole DNA methylome analysis by integrating MEDIP-seq and MRE-seq. Methods Mol Biol, 2018, 1708: 209–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. He Y, Jang HS, Xing X, Li D, Vasek MJ, Dougherty JD, Wang T. Sci Adv, 2020, 6: eaba0521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun Z, Terragni J, Borgaro JG, Liu Y, Yu L, Guan S, Wang H, Sun D, Cheng X, Zhu Z, Pradhan S, Zheng Y. Cell Rep, 2013, 3: 567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mooijman D, Dey SS, Boisset JC, Crosetto N, van Oudenaarden A. Nat Biotechnol, 2016, 34: 852–856

    Article  CAS  PubMed  Google Scholar 

  66. Xia B, Han D, Lu X, Sun Z, Zhou A, Yin Q, Zeng H, Liu M, Jiang X, Xie W, He C, Yi C. Nat Methods, 2015, 12: 1047–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu C, Wang Y, Yang W, Wu F, Zeng W, Chen Z, Huang J, Zou G, Zhang X, Wang S, Weng X, Wu Z, Zhou Y, Zhou X. Chem Sci, 2017, 8: 7443–7447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang Y, Liu C, Zhang X, Yang W, Wu F, Zou G, Weng X, Zhou X. Chem Sci, 2018, 9: 3723–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zeng H, He B, Xia B, Bai D, Lu X, Cai J, Chen L, Zhou A, Zhu C, Meng H, Gao Y, Guo H, He C, Dai Q, Yi C. J Am Chem Soc, 2018, 140: 13190–13194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Y, Zhang X, Wu F, Chen Z, Zhou X. Chem Sci, 2019, 10: 447–452

    Article  PubMed  Google Scholar 

  71. Liu Y, Siejka-Zielińska P, Velikova G, Bi Y, Yuan F, Tomkova M, Bai C, Chen L, Schuster-Bückler B, Song CX. Nat Biotechnol, 2019, 37: 424–429

    Article  CAS  PubMed  Google Scholar 

  72. Liu Y, Hu Z, Cheng J, Siejka-Zielińska P, Chen J, Inoue M, Ahmed AA, Song CX. Nat Commun, 2021, 12: 618

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Chen Z, Zhang X, Weng X, Deng J, Yang W, Wu F, Han S, Xia C, Zhou Y, Chen Y, Zhou X. ACS Chem Biol, 2022, 17: 77–84

    Article  CAS  PubMed  Google Scholar 

  74. Mortishire-Smith BJ, Becker SM, Simeone A, Melidis L, Balasubramanian S. J Am Chem Soc, 2023, 145: 10505–10511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu H, Chen J, Cheng J, Kong L, Chen X, Inoue M, Liu Y, Kriaucionis S, Zhao M, Song CX. J Am Chem Soc, 2023, 145: 7095–7100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Carpenter MA, Li M, Rathore A, Lackey L, Law EK, Land AM, Leonard B, Shandilya SMD, Bohn MF, Schiffer CA, Brown WL, Harris RS. J Biol Chem, 2012, 287: 34801–34808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nabel CS, Jia H, Ye Y, Shen L, Goldschmidt HL, Stivers JT, Zhang Y, Kohli RM. Nat Chem Biol, 2012, 8: 751–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schutsky EK, Nabel CS, Davis AKF, DeNizio JE, Kohli RM. Nucleic Acids Res, 2017, 45: 7655–7665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schutsky EK, DeNizio JE, Hu P, Liu MY, Nabel CS, Fabyanic EB, Hwang Y, Bushman FD, Wu H, Kohli RM. Nat Biotechnol, 2018, 36: 1083–1090

    Article  CAS  Google Scholar 

  80. Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, Guan S, Dai N, Campbell MA, Sexton BS, Marks K, Samaranayake M, Samuelson JC, Church HE, Tamanaha E, CorrêaJr. IR, Pradhan S, Dimalanta ET, EvansJr. TC, Williams L, Davis TB. Genome Res, 2021, 31: 1280–1289

    Article  PubMed  PubMed Central  Google Scholar 

  81. Xie NB, Wang M, Ji TT, Guo X, Ding JH, Yuan BF, Feng YQ. Chem Sci, 2022, 13: 7046–7056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xiong J, Chen KK, Xie NB, Ji TT, Yu SY, Tang F, Xie C, Feng YQ, Yuan BF. Anal Chem, 2022, 94: 15489–15498

    Article  CAS  PubMed  Google Scholar 

  83. Wang M, Xie NB, Chen KK, Ji TT, Xiong J, Guo X, Yu SY, Tang F, Xie C, Feng YQ, Yuan BF. Anal Chem, 2023, 95: 1556–1565

    CAS  PubMed  Google Scholar 

  84. Wang T, Fowler JM, Liu L, Loo CE, Luo M, Schutsky EK, Berríos KN, DeNizio JE, Dvorak A, Downey N, Montermoso S, Pingul BY, Nasrallah ML, Gosal WS, Wu H, Kohli RM. Nat Chem Biol, 2023, 19: 1004–1012

    Article  CAS  PubMed  Google Scholar 

  85. Ličytė J, Gibas P, Skardžiūtė K, Stankevičius V, Rukšėnaitė A, Kriukienė E. Cell Rep, 2020, 32: 108155

    Article  PubMed  Google Scholar 

  86. Siejka-Zielińska P, Cheng J, Jackson F, Liu Y, Soonawalla Z, Reddy S, Silva M, Puta L, McCain MV, Culver EL, Bekkali N, Schuster-Böckler B, Palamara PF, Mann D, Reeves H, Barnes E, Sivakumar S, Song CX. Sci Adv, 2021, 7: eabh0534

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cheng J, Siejka-Zielińska P, Liu Y, Chandran A, Kriaucionis S, Song CX. Nucleic Acids Res, 2021, 49: e76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH. Nature, 2017, 550: 345–353

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nat Biotechnol, 2021, 39: 1348–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tse OYO, Jiang P, Cheng SH, Peng W, Shang H, Wong J, Chan SL, Poon LCY, Leung TY, Chan KCA, Chiu RWK, Lo YMD. Proc Natl Acad Sci USA, 2021, 118: e2019768118

    Article  PubMed  PubMed Central  Google Scholar 

  91. Song CX, Clark TA, Lu XY, Kislyuk A, Dai Q, Turner SW, He C, Korlach J. Nat Methods, 2011, 9: 75–77

    Article  PubMed  PubMed Central  Google Scholar 

  92. Searle B, Müller M, Carell T, Kellett A. Angew Chem Int Ed, 2023, 62: e202215704

    Article  CAS  Google Scholar 

  93. Liu Y, Cheng J, Siejka-Zielińska P, Weldon C, Roberts H, Lopopolo M, Magri A, D’Arienzo V, Harris JM, McKeating JA, Song CX. Genome Biol, 2020, 21: 54

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen J, Cheng J, Chen X, Inoue M, Liu Y, Song CX. Nucleic Acids Res, 2022, 50: e104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sun Z, Vaisvila R, Hussong LM, Yan B, Baum C, Saleh L, Samaranayake M, Guan S, Dai N, CorrêaJr. IR, Pradhan S, Davis TB, EvansJr. TC, Ettwiller LM. Genome Res, 2021, 31: 291–300

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sakamoto Y, Zaha S, Nagasawa S, Miyake S, Kojima Y, Suzuki A, Suzuki Y, Seki M. Nucleic Acids Res, 2021, 49: e81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Füllgrabe J, Gosal WS, Creed P, Liu S, Lumby CK, Morley DJ, Ost TWB, Vilella AJ, Yu S, Bignell H, Burns P, Charlesworth T, Fu B, Fordham H, Harding NJ, Gandelman O, Golder P, Hodson C, Li M, Lila M, Liu Y, Mason J, Mellad J, Monahan JM, Nentwich O, Palmer A, Steward M, Taipale M, Vandomme A, San-Bento RS, Singhal A, Vivian J, Wójtowicz N, Williams N, Walker NJ, Wong NCH, Yalloway GN, Holbrook JD, Balasubramanian S. Nat Biotechnol, 2023, doi: https://doi.org/10.1038/s41587-022-01652-0

Download references

Acknowledgements This work was supported by the start-up funding from Wuhan University and Fundamental Research Funds for the Central Universities (2042023kf0118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yafen Wang or Yibin Liu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Tang, Y., Lin, B. et al. Bisulfite-free mapping of DNA cytosine modifications: challenges and perspectives. Sci. China Chem. 66, 3044–3053 (2023). https://doi.org/10.1007/s11426-023-1729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1729-2

Navigation