Skip to main content
Log in

Synthesis of chiral allylic phosphonates via asymmetric reductive cross-coupling of α-bromophosphonates and vinyl bromides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

This article has been updated

Abstract

Chiral phosphine-containing skeletons play a pivotal role in bioactive natural products, pharmaceuticals, chiral catalysts, and ligands. Despite considerable progress has been made in the synthesis of chiral phosphorus compounds, the development of facile and modular methods to access chiral allylic phosphorus compounds remains challenging due to the simultaneous control required for reactivity, enantioselectivity, and stereoselectivity. Herein, we present a general and modular platform to achieve the asymmetric reductive cross-coupling of α-bromophosphonates and vinyl bromides, enabling the synthesis of highly valuable chiral allylic phosphonate products with remarkable yields, enantioselectivities, and stereoselectivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 19 October 2023

    The corresponding author Tao Xu to Tao XU has been updated.

References

  1. Zhou QL. Privileged Chiral Ligands and Catalysts. Weinheim: Wiley-VCH, 2011. 55–91

    Book  Google Scholar 

  2. Hu HL, Ren X, He J, Zhu L, Fang S, Su Z, Wang T. Sci China Chem, 2022, 65: 2500–2511

    Article  CAS  Google Scholar 

  3. Belal M, Li Z, Lu X, Yin G. Sci China Chem, 2021, 64: 513–533

    Article  CAS  Google Scholar 

  4. Hecker SJ, Erion MD. J Med Chem, 2008, 51: 2328–2345

    Article  CAS  PubMed  Google Scholar 

  5. Sheng XC, Pyun HJ, Chaudhary K, Wang J, Doerffler E, Fleury M, McMurtrie D, Chen X, Delaney Iv WE, Kim CU. Bioorg Med Chem Lett, 2009, 19: 3453–3457

    Article  CAS  PubMed  Google Scholar 

  6. Wiemer AJ. ACS Pharmacol Transl Sci, 2020, 3: 613–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jia X, Schols D, Meier C. J Med Chem, 2020, 63: 6003–6027

    Article  CAS  PubMed  Google Scholar 

  8. Butti P, Rochat R, Sadow A, Togni A. Angew Chem Int Ed, 2008, 47: 4878–4881

    Article  CAS  Google Scholar 

  9. Zhang L, Liu W, Zhao X. Eur J Org Chem, 2014, 2014(31): 6846–6849

    Article  CAS  Google Scholar 

  10. Nie SZ, Davison RT, Dong VM. J Am Chem Soc, 2018, 140: 16450–16454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Long J, Li Y, Zhao W, Yin G. Chem Sci, 2022, 13: 1390–1397

    Article  CAS  PubMed  Google Scholar 

  12. Yang Z, Wang JJ. Angew Chem Int Ed, 2021, 60: 27288–27292

    Article  CAS  Google Scholar 

  13. Li B, Liu M, Rehman SU, Li C. J Am Chem Soc, 2022, 144: 2893–2898

    Article  CAS  PubMed  Google Scholar 

  14. Nishimura T, Hirabayashi S, Yasuhara Y, Hayashi T. J Am Chem Soc, 2006, 128: 2556–2557

    Article  CAS  PubMed  Google Scholar 

  15. Nishimura T, Guo XX, Hayashi T. Chem Asian J, 2008, 3: 1505–1510

    Article  CAS  PubMed  Google Scholar 

  16. Yang XY, Tay WS, Li Y, Pullarkat SA, Leung PH. Organometallics, 2015, 34: 5196–5201

    Article  CAS  Google Scholar 

  17. Hong L, Sun W, Liu C, Zhao D, Wang R. Chem Commun, 2010, 46: 2856–2858

    Article  CAS  Google Scholar 

  18. Sun W, Hong L, Liu C, Wang R. Org Lett, 2010, 12: 3914–3917

    Article  CAS  PubMed  Google Scholar 

  19. Hatano M, Horibe T, Ishihara K. Angew Chem Int Ed, 2013, 52: 4549–4553

    Article  CAS  Google Scholar 

  20. Choi J, Fu GC. J Am Chem Soc, 2012, 134: 9102–9105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi J, Martín-Gago P, Fu GC. J Am Chem Soc, 2014, 136: 12161–12165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lou S, Fu GC. J Am Chem Soc, 2010, 132: 5010–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cherney AH, Reisman SE. J Am Chem Soc, 2014, 136: 14365–14368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suzuki N, Hofstra JL, Poremba KE, Reisman SE. Org Lett, 2017, 19: 2150–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hofstra JL, Cherney AH, Ordner CM, Reisman SE. J Am Chem Soc, 2018, 140: 139–142

    Article  CAS  PubMed  Google Scholar 

  26. DeLano TJ, Reisman SE. ACS Catal, 2019, 9: 6751–6754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu L, Wei H, Shen J, Chen J, Zhang W. Acta Chim Sin, 2021, 79: 1331–1344

    Article  CAS  Google Scholar 

  28. Cheng X, Li T, Liu Y, Lu Z. ACS Catal, 2021, 11: 11059–11065

    Article  CAS  Google Scholar 

  29. Xu J, Li Z, Xu Y, Shu X, Huo H. ACS Catal, 2021, 11: 13567–13574

    Article  CAS  Google Scholar 

  30. Liu J, Gong H, Zhu S. Angew Chem Int Ed, 2021, 60: 4060–4064

    Article  CAS  Google Scholar 

  31. Jin RX, Wu BB, Bian KJ, Yu JL, Dai JC, Zuo YW, Zhang YF, Wang XS. Nat Commun, 2022, 13: 7035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He SJ, Wang JW, Li Y, Xu ZY, Wang XX, Lu X, Fu Y. J Am Chem Soc, 2020, 142: 214–221

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Yuan M, Chen F, Huang Z, Qing FL, Gutierrez O, Chu L. Chem, 2023, 9: 154–169

    Article  CAS  Google Scholar 

  34. Wang H, Zheng P, Wu X, Li Y, Xu T. J Am Chem Soc, 2022, 144: 3989–3997

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Wu X, Xu T. Angew Chem Int Ed, 2023, 62: e202218299

    Article  CAS  Google Scholar 

  36. Zhou J, Wang D, Xu W, Hu Z, Xu T. J Am Chem Soc, 2023, 145: 2081–2087

    Article  CAS  PubMed  Google Scholar 

  37. Lin D, Chen Y, Dong Z, Pei P, Ji H, Tai L, Chen LA. CCS Chem, 2023, 5: 1386–1397

    Article  CAS  Google Scholar 

  38. Lin Q, Dawson G, Diao T. Synlett, 2021, 32: 1606–1620

    Article  CAS  Google Scholar 

  39. Turro RF, Wahlman JLH, Tong ZJ, Chen X, Yang M, Chen EP, Hong X, Hadt RG, Houk KN, Yang YF, Reisman SE. JAm Chem Soc, 2023, 145: 14705–14715

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22071183) and the Science and Technology Commission of Shanghai Municipality (19DZ2271500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao XU.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

11426_2023_1726_MOESM1_ESM.pdf

Synthesis of Chiral Allylic Phosphonates via Asymmetric Reductive Cross-Coupling of α-Bromophosphonates and Vinyl Bromides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, X. & XU, T. Synthesis of chiral allylic phosphonates via asymmetric reductive cross-coupling of α-bromophosphonates and vinyl bromides. Sci. China Chem. 66, 2621–2625 (2023). https://doi.org/10.1007/s11426-023-1726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1726-1

Keywords

Navigation