Skip to main content
Log in

Circularly polarized phosphorescence and photon transport of micro/nanocrystals of ruthenium and iridium complexes with chiral anions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Materials with efficient circularly polarized phosphorescences (CPPs) are of potential use in advanced data encryption and anti-counterfeiting, bioimaging, optoelectronic devices and so forth. Herein, a simple method is presented for the preparations of CPP-active micro/nanocrystals with large luminescence dissymmetry factors (glum), high phosphorescence quantum efficiencies (Φp) and tunable emission colors. Diastereomeric IrIII and RuII complexes with chiral (±)-camphorsulfonate counter-anions are readily synthesized and assembled into crystalline microrods, microplates or nanofibers with ordered morphologies. The chir-ality information of chiral counter-anions is efficiently transferred to the metal components to afford CPPs with cyan, green, yellow, or red emission colors and ΦP in the range of 5%–85%. The number of chiral anions is found to play a role in influencing the CPP magnitudes of these crystals. The dicationic RuII and tricationic IrIII complexes show glum values in the 10−2 order, which are much larger with respect to those of monocationic IrIII complexes. Single crystal X-ray analysis is performed to obtain information on the chirality transfer of these materials. In addition, circularly polarized photonic signal waveguiding is demonstrated using the microcrystals of an IrIII complex. This work demonstrates an appealing strategy of constructing chiral micro/nano-architectures for potential applications in chiral nanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Long G, Sabatini R, Saidaminov MI, Lakhwani G, Rasmita A, Liu X, Sargent EH, Gao W. Nat Rev Mater, 2020, 5: 423–439

    Article  Google Scholar 

  2. Albano G, Pescitelli G, Di Bari L. Chem Rev, 2020, 120: 10145–10243

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Yu S, Han B, Zhou Y, Zhang X, Gao X, Tang Z. Matter, 2022, 5: 837–875

    Article  CAS  Google Scholar 

  4. Ma S, Ahn J, Moon J. AdvMater, 2021, 33: 2005760

    CAS  Google Scholar 

  5. Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Sci China Chem, 2021, 64: 2060–2104

    Article  CAS  Google Scholar 

  6. Wang X, Ma S, Zhao B, Deng J. AdvFunctMater, 2023, 33: 2214364

    CAS  Google Scholar 

  7. Su Y, Phua SZF, Li Y, Zhou X, Jana D, Liu G, Lim WQ, Ong WK, Yang C, Zhao Y. Sci Adv, 2018, 4: eaas9732

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gu L, Shi H, Bian L, Gu M, Ling K, Wang X, Ma H, Cai S, Ning W, Fu L, Wang H, Wang S, Gao Y, Yao W, Huo F, Tao Y, An Z, Liu X, Huang W. Nat Photon, 2019, 13: 406–411

    Article  CAS  Google Scholar 

  9. Kabe R, Notsuka N, Yoshida K, Adachi C. Adv Mater, 2016, 28: 655–660

    Article  CAS  PubMed  Google Scholar 

  10. Brandt JR, Wang X, Yang Y, Campbell AJ, Fuchter MJ. J Am Chem Soc, 2016, 138: 9743–9746

    Article  CAS  PubMed  Google Scholar 

  11. Chi Y, Chou PT. Chem Soc Rev, 2010, 39: 638–655

    Article  CAS  PubMed  Google Scholar 

  12. Doistau B, Jiménez JR, Piguet C. Front Chem, 2020, 8: 555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hamzehpoor E, Perepichka DF. Angew Chem IntEd, 2020, 59: 9977–9981

    Article  CAS  Google Scholar 

  14. Ren Y, Dai W, Guo S, Dong L, Huang S, Shi J, Tong B, Hao N, Li L, Cai Z, Dong Y. J Am Chem Soc, 2022, 144: 1361–1369

    Article  CAS  PubMed  Google Scholar 

  15. Patil Y, Demangeat C, Favereau L. Chirality, 2023, 35: 390–410

    Article  CAS  PubMed  Google Scholar 

  16. Gong ZL, Li ZQ, Zhong YW. Aggregate, 2022, 3: e177

    Article  CAS  Google Scholar 

  17. Zhang YP, Zheng YX. Dalton Trans, 2022, 51: 9966–9970

    Article  CAS  PubMed  Google Scholar 

  18. Hellou N, Srebroer M, Favereau L, Zinna F, Caytan E, Toupet L, Doret V, Jean M, Vanthuyne N, Williams JAG, Di Bari L, Autschbach J, Crassous J. Angew Chem IntEd, 2017, 56: 8236–8239

    Article  CAS  Google Scholar 

  19. Li TY, Jing YM, Liu X, Zhao Y, Shi L, Tang Z, Zheng YX, Zuo JL. Sci Rep, 2015, 5: 14912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han J, Guo S, Wang J, Wei L, Zhuang Y, Liu S, Zhao Q, Zhang X, Huang W. Adv Opt Mater, 2017, 5: 1700359

    Article  Google Scholar 

  21. Yan ZP, Liao K, Han HB, Su J, Zheng YX, Zuo JL. Chem Commun, 2019, 55: 8215–8218

    Article  CAS  Google Scholar 

  22. Schaffner-Hamann C, von Zelewsky A, Barbieri A, Barigelletti F, Muller G, Riehl JP, Neels A. J Am Chem Soc, 2004, 126: 9339–9348

    Article  CAS  PubMed  Google Scholar 

  23. Coughlin FJ, Westrol MS, Oyler KD, Byrne N, Kraml C, Zysman-Colman E, Lowry MS, Bernhard S. Inorg Chem, 2008, 47: 2039–2048

    Article  CAS  PubMed  Google Scholar 

  24. Jiang L, Liu X, Tan L. J Inorg Biochem, 2020, 213: 111263

    Article  CAS  PubMed  Google Scholar 

  25. Liu YJ, Chen L, Wang ZY, Dong XY, Li YK, Zang SQ. Sci China Chem, 2023, 66: 2011–2018

    Article  CAS  Google Scholar 

  26. Xu C, Yin C, Wu W, Ma X. Sci China Chem, 2022, 65: 75–81

    Article  CAS  Google Scholar 

  27. Liu C, Yang JC, Lam JWY, Feng HT, Tang BZ. Chem Sci, 2022, 13: 611–632

    Article  PubMed  Google Scholar 

  28. Sang Y, Han J, Zhao T, Duan P, Liu M. Adv Mater, 2020, 32: 1900110

    Article  CAS  Google Scholar 

  29. Deng Y, Wang M, Zhuang Y, Liu S, Huang W, Zhao Q. Light Sci Appl, 2021, 10: 76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li J, Hou C, Huang C, Xu S, Peng X, Qi Q, Lai WY, Huang W. Research, 2020, 2020: https://doi.org/10.34133/2020/3839160

  31. Li J, Peng X, Hou C, Shi S, Ma J, Qi Q, Lai W. Chem Eur J, 2022, 28: 202202336

    Article  Google Scholar 

  32. Li J, Peng X, Chen D, Shi S, Ma J, Lai WY. ACS Macro Lett, 2022, 11: 1174–1182

    Article  CAS  PubMed  Google Scholar 

  33. Gong ZL, Zhong YW. Sci China Chem, 2021, 64: 788–799

    Article  CAS  Google Scholar 

  34. Gong ZL, Dan TX, Yao J, Zhong YW. ChemPhotoChem, 2022, 6: 202100239

    Article  Google Scholar 

  35. Li Z, Han Y, Nie F, Liu M, Zhong H, Wang F. Angew Chem Int Ed, 2021, 60: 8212–8219

    Article  CAS  Google Scholar 

  36. Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Angew Chem Int Ed, 2022, 61: e202207310

    Article  CAS  Google Scholar 

  37. Park G, Kim H, Yang H, Park KR, Song I, Oh JH, Kim C, You Y. Chem Sci, 2019, 10: 1294–1301

    Article  CAS  PubMed  Google Scholar 

  38. Yang B, Ni H, Wang H, Hu Y, Luo K, Yu W. J Phys Chem C, 2020, 124: 23879–23887

    Article  CAS  Google Scholar 

  39. Rota Martir D, Zysman-Colman E. Coord Chem Rev, 2018, 364: 86–117

    Article  CAS  Google Scholar 

  40. Yam VWW, Au VKM, Leung SYL. ChemRev, 2015, 115: 7589–7728

    CAS  Google Scholar 

  41. Takaishi K, Nakatsuka Y, Asano H, Yamada Y, Ema T. Chem Eur J, 2022, 28: e202104212

    Article  CAS  PubMed  Google Scholar 

  42. Li ZQ, Gong ZL, Shao JY, Yao J, Zhong YW. Angew Chem Int Ed, 2021, 60: 14595–14600

    Article  CAS  Google Scholar 

  43. Li ZQ, Wang YD, Shao JY, Zhou Z, Gong ZL, Zhang C, Yao J, Zhong YW. Angew Chem Int Ed, 2023, 62: e202302160

    Article  CAS  Google Scholar 

  44. Sunesh CD, Subeesh MS, Shanmugasundaram K, Chitumalla RK, Jang J, Choe Y. Dyes Pigments, 2016, 128: 190–200

    Article  CAS  Google Scholar 

  45. Yang X, Li M, Peng H, Zhang Q, Wu S, Xiao W, Chen X, Niu Z, Chen G, Li G. Eur J Inorg Chem, 2019, 2019(6): 847–855

    Article  CAS  Google Scholar 

  46. Lowry MS, Hudson WR, Pascal RA, Bernhard S. J Am Chem Soc, 2004, 126: 14129–14135

    Article  CAS  PubMed  Google Scholar 

  47. Moura NMM, Castro KADF, Biazzotto JC, Prandini JA, Lodeiro C, Faustino MAF, Simões MMQ, da Silva RS, Neves MGPMS. Dyes Pigments, 2022, 205: 110501

    Article  CAS  Google Scholar 

  48. Krasutskii PA, Rodionov VN, Tikhonov VP, Yurchenko AG. Theor Exp Chem, 1984, 20: 55–61

    Article  Google Scholar 

  49. Gillgren H, Stenstam A, Ardhammar M, Nordén B, Sparr E, Ulvenlund S. Langmuir, 2002, 18: 462–469

    Article  CAS  Google Scholar 

  50. Ohira A, Okoshi K, Fujiki M, Kunitake M, Naito M, Hagihara T. Adv Mater, 2004, 16: 1645–1650

    Article  CAS  Google Scholar 

  51. Zinna F, Di Bari L. Chirality, 2015, 27: 1–13

    Article  CAS  PubMed  Google Scholar 

  52. Singh A, Teegardin K, Kelly M, Prasad KS, Krishnan S, Weaver JD. J Organomet Chem, 2015, 776: 51–59

    Article  CAS  Google Scholar 

  53. Bolle P, Serier-Brault H, Génois R, Faulques E, Boulmier A, Oms O, Lepeltier M, Marrot J, Dolbecq A, Mialane P, Dessapt R. J Mater Chem C, 2016, 4: 11392–11395

    Article  CAS  Google Scholar 

  54. Xia H, Cheng J, Zhu L, Xie K, Zhang Q, Zhang D, Zou G. ACS Appl Mater Interfaces, 2019, 11: 15969–15976

    Article  CAS  PubMed  Google Scholar 

  55. Lv Y, Xiong Z, Yao Y, Ren A, Xiang S, Zhao YS, Zhang Z. Chem Eur J, 2021, 27: 3297–3301

    Article  CAS  PubMed  Google Scholar 

  56. Liu F, Zhang T, Mondal D, Teng S, Zhang Y, Huang K, Wang D, Yang W, Mahadevan P, Zhao YS, Xie R, Pradhan N. Angew Chem Int Ed, 2021, 60: 13548–13553

    Article  CAS  Google Scholar 

  57. Zhao J, Zhang T, Dong XY, Sun ME, Zhang C, Li X, Zhao YS, Zang SQ. J Am Chem Soc, 2019, 141: 15755–15760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2022YFA1204401), the National Natural Science Foundation of China (21925112, 22090021) and the BMS Junior Fellow of Beijing National Labortory for Molecular Sciences (BNLMS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Wu Zhong or Jiannian Yao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors

Supporting Information for

11426_2023_1723_MOESM1_ESM.pdf

Circularly Polarized Phosphorescence and Photon Transport of Micro/nanocrystals of Ruthenium and Iridium Complexes with Chiral Anions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZQ., Gong, ZL., Liang, T. et al. Circularly polarized phosphorescence and photon transport of micro/nanocrystals of ruthenium and iridium complexes with chiral anions. Sci. China Chem. 66, 2892–2902 (2023). https://doi.org/10.1007/s11426-023-1723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1723-7

Navigation