Skip to main content
Log in

Sigmatropic rearrangements of B(MIDA)-propargylic alcohols towards the diverse synthesis of α-functionalized organoborons

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

α-Functionalized organoborons are useful building blocks and key structural elements in functional molecules. Their previous synthesis relied on the famous Matteson reaction or the late-stage borylative modification of alkynes or alkenes. Recently, the synthetic transformation of borylated building blocks offers another useful strategy and is currently actively explored. We report herein that B(MIDA)-propargylic alcohols (BPAs) are a useful type of borylated building blocks. Bearing two complementary functional group handles (alkyne and hydroxyl) in close proximity, the redox-neutral [3,3] and [2,3] sigmatropic rearrangements of BPAs allow the efficient synthesis of several types of α-functionalized boronates, including α,β-unsaturated acylborons, α-S/P-substituted allenylborons, boryl-substituted thiazoles and a borylated α,β-unsaturated hydrazine, some of which are otherwise challenging targets using other synthetic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall DG. Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials. 2nd ed. Weinheim: Wiley-VCH, 2011

    Book  Google Scholar 

  2. Andrés P, Ballano G, Calaza MI, Cativiela C. Chem Soc Rev, 2016, 45: 2291–2307

    Article  PubMed  Google Scholar 

  3. Matteson DS. J Org Chem, 2013, 78: 10009–10023

    Article  PubMed  CAS  Google Scholar 

  4. Xie Q, Dong G. J Am Chem Soc, 2021, 143: 14422–14427

    Article  PubMed  CAS  Google Scholar 

  5. Jin JK, Zheng WX, Xia HM, Zhang FL, Wang YF. Org Lett, 2019, 21: 8414–8418

    Article  PubMed  CAS  Google Scholar 

  6. Feng Q, Li S, Li Z, Yan Q, Lin X, Song L, Zhang X, Wu YD, Sun J. J Am Chem Soc, 2022, 144: 14846–14855

    Article  PubMed  CAS  Google Scholar 

  7. Ma X, Kuang Z, Song Q. JACS Au, 2022, 2: 261–279

    Article  PubMed  CAS  Google Scholar 

  8. Volochnyuk DM, Gorlova AO, Grygorenko OO. Chem Eur J, 2021, 27: 15277–15326

    Article  PubMed  CAS  Google Scholar 

  9. Aich D, Kumar P, Ghorai D, Kanti Das K, Panda S. Chem Commun, 2022, 58: 13298–13316

    Article  CAS  Google Scholar 

  10. Gillis EP, Burke MD. J Am Chem Soc, 2007, 129: 6716–6717

    Article  PubMed  CAS  Google Scholar 

  11. Mancilla T, Contreras R, Wrackmeyer B. J Organomet Chem, 1986, 307: 1–6

    Article  CAS  Google Scholar 

  12. He Z, Yudin AK. J Am Chem Soc, 2011, 133: 13770–13773

    Article  PubMed  CAS  Google Scholar 

  13. Li J, Burke MD. J Am Chem Soc, 2011, 133: 13774–13777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Diaz DB, Scully CCG, Liew SK, Adachi S, Trinchera P, St. Denis JD, Yudin AK. Angew Chem Int Ed, 2016, 55: 12659–12663

    Article  CAS  Google Scholar 

  15. Ivon YM, Mazurenko IV, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Angew Chem Int Ed, 2020, 59: 18016–18022

    Article  CAS  Google Scholar 

  16. Soor HS, Diaz DB, Burton KI, Yudin AK. Angew Chem Int Ed, 2021, 60: 16366–16371

    Article  CAS  Google Scholar 

  17. Lee CF, Holownia A, Bennett JM, Elkins JM, St. Denis JD, Adachi S, Yudin AK. Angew Chem Int Ed, 2017, 56: 6264–6267

    Article  CAS  Google Scholar 

  18. Lv WX, Zeng YF, Li Q, Chen Y, Tan DH, Yang L, Wang H. Angew Chem Int Ed, 2016, 55: 10069–10073

    Article  CAS  Google Scholar 

  19. Molander GA, Raushel J, Ellis NM. J Org Chem, 2010, 75: 4304–4306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Scharnagl FK, Bose SK, Marder TB. Org Biomol Chem, 2017, 15: 1738–1752

    Article  PubMed  CAS  Google Scholar 

  21. Osuna Gálvez A, Bode JW. J Am Chem Soc, 2019, 141: 8721–8726

    Article  PubMed  Google Scholar 

  22. Taguchi J, Takeuchi T, Takahashi R, Masero F, Ito H. Angew Chem Int Ed, 2019, 58: 7299–7303

    Article  CAS  Google Scholar 

  23. Tien CH, Trofimova A, Holownia A, Kwak BS, Larson RT, Yudin AK. Angew Chem Int Ed, 2021, 60: 4342–4349

    Article  CAS  Google Scholar 

  24. Zeng YF, Ji WW, Lv WX, Chen Y, Tan DH, Li Q, Wang H. Angew Chem Int Ed, 2017, 56: 14707–14711

    Article  CAS  Google Scholar 

  25. Lv WX, Li Q, Li JL, Li Z, Lin E, Tan DH, Cai YH, Fan WX, Wang H. Angew Chem Int Ed, 2018, 57: 16544–16548

    Article  CAS  Google Scholar 

  26. Wang Q, Biosca M, Himo F, Szabó KJ. Angew Chem Int Ed, 2021, 60: 26327–26331

    Article  CAS  Google Scholar 

  27. Liu Y, Chen ZH, Li Y, Qian J, Li Q, Wang H. JAm Chem Soc, 2022, 144: 14380–14387

    Article  CAS  Google Scholar 

  28. Lee SJ, Anderson TM, Burke MD. Angew Chem Int Ed, 2010, 49: 8860–8863

    Article  CAS  Google Scholar 

  29. Tan DH, Cai YH, Zeng YF, Lv WX, Yang L, Li Q, Wang H. Angew Chem Int Ed, 2019, 58: 13784–13788

    Article  CAS  Google Scholar 

  30. Gálvez AO, Schaack CP, Noda H, Bode JW. J Am Chem Soc, 2017, 139: 1826–1829

    Article  PubMed  Google Scholar 

  31. Zhu Y, Sun L, Lu P, Wang Y. ACS Catal, 2014, 4: 1911–1925

    Article  CAS  Google Scholar 

  32. Qian J, Chen ZH, Liu Y, Li Y, Li Q, Huang SL, Wang H. Chin Chem Lett, 2023, 34: 107479

    Article  CAS  Google Scholar 

  33. He Z, Trinchera P, Adachi S, St. Denis JD, Yudin AK. Angew Chem Int Ed, 2012, 51: 11092–11096

    Article  CAS  Google Scholar 

  34. Lepage ML, Lai S, Peressin N, Hadjerci R, Patrick BO, Perrin DM. Angew Chem Int Ed, 2017, 56: 15257–15261

    Article  CAS  Google Scholar 

  35. Wu D, Fohn NA, Bode JW. Angew Chem Int Ed, 2019, 58: 11058–11062

    Article  CAS  Google Scholar 

  36. Cheng LJ, Zhao S, Mankad NP. Angew Chem IntEd, 2021, 60: 2094–2098

    Article  CAS  Google Scholar 

  37. Lin S, Wang L, Sharma A. Chem Sci, 2021, 12: 7924–7929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Schuhmacher A, Ryan SJ, Bode JW. Angew Chem Int Ed, 2021, 60: 3918–3922

    Article  CAS  Google Scholar 

  39. Tung P, Schuhmacher A, Schilling PE, Bode JW, Mankad NP. Angew Chem Int Ed, 2022, 61: e202114513

    Article  ADS  CAS  Google Scholar 

  40. Ibrahem I, Breistein P, Cordova A. Chem Eur J, 2012, 18: 5175–5179

    Article  PubMed  CAS  Google Scholar 

  41. Cadierno V, Crochet P, Garcia-Garrido SE, Gimeno J. Dalton Trans, 2010, 39: 4015–4031

    Article  PubMed  CAS  Google Scholar 

  42. Nikolaev A, Orellana A. Org Lett, 2015, 17: 5796–5799

    Article  PubMed  CAS  Google Scholar 

  43. Bellemin-Laponnaz S, Gisie H, Le Ny JP, Osborn JA. Angew Chem Int Ed, 1997, 36: 976–978

    Article  CAS  Google Scholar 

  44. Meinhardt NA, Boisselle AP. J Org Chem, 1961, 27: 1828–1833

    Google Scholar 

  45. Torres LC, Dobrovetsky R, Caputo CB. Chem Commun, 2021, 57: 8272–8275

    Article  CAS  Google Scholar 

  46. Takeshi N, Akira A-I. Tetrahedron Lett, 1976, 27: 2335–2338

    Google Scholar 

  47. Harusawa S, Moriyama H, Kase N, Ohishi H, Yoneda R, Kurihara T. Tetrahedron, 1995, 51: 6475–6494

    Article  CAS  Google Scholar 

  48. Huang MY, Zhao YT, Zhang CD, Zhu SF. Angew Chem Int Ed, 2022, 61: e202203343

    Article  ADS  CAS  Google Scholar 

  49. Gao X, Pan Y, Lin M, Chen L, Zhan Z. Org Biomol Chem, 2010, 8: 3259–3266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22022114, 21971261), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01Y093), and Guangdong Basic Research Center of Excellence for Functional Molecular Engineering. This work is dedicated to the 20th Anniversary of School of Pharmaceutical Sciences, Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingjiang Li or Honggen Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1722_MOESM1_ESM.pdf

Sigmatropic Rearrangements of B(MIDA)-Propargylic Alcohols towards the Diverse Synthesis of α-Functionalized Organoborons

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Liu, LC., Chen, ZH. et al. Sigmatropic rearrangements of B(MIDA)-propargylic alcohols towards the diverse synthesis of α-functionalized organoborons. Sci. China Chem. 67, 568–575 (2024). https://doi.org/10.1007/s11426-023-1722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1722-8

Navigation