Skip to main content
Log in

Theoretical insight into the activity and selectivity in palladium/Ming-Phos-catalyzed three-component asymmetric synthesis of gem-diarylmethine silanes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Recently, a three-component coupling reaction for efficient construction of gem-diarylmethine silanes was developed, utilizing a Pd-Ming-Phos catalyst. To explore the underlying mechanism governing this intriguing reaction, we have conducted comprehensive density functional theory (DFT) computations (M06-L/SDD/6-311++G(d,p)/SMD//B3LYP-D3/lanl2dz/6-31G(d,p)). DFT calculations reveal that the oxidative addition of ArBr to Pd(0) is the rate-determining step, and the carbenation process of PhCHN2 to Pd(II) is the enantioselectivity-determining step. Moreover, the Ming-Phos ligand exhibits a self-adaptive nature, allowing it to dynamically adapt its coordination patterns with the metal center in different elementary steps, thereby enhancing the overall reactivity. The enantioselectivity is determined by both the trans effect and the side-arm effect of the ligand. This mechanism nicely explains why TY-Phos with P-tBu2 instead of the Ming-Phos with P-Ph2 results in poor reactivity and much reduced enantioselectivity. This study not only provides deeper insights into the functioning principles of SadPhos ligands but also offers valuable guidance for future ligand modifications and optimizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Min GK, Hernandez D, Skrydstrup T. Acc Chem Res, 2013, 46: 457–470

    Article  CAS  PubMed  Google Scholar 

  2. Franz AK, Wilson SO. J Med Chem, 2013, 56: 388–405

    Article  CAS  PubMed  Google Scholar 

  3. Guo J, Cheng Z, Chen J, Chen X, Lu Z. Acc Chem Res, 2021, 54: 2701–2716

    Article  CAS  PubMed  Google Scholar 

  4. Bergens SH, Noheda P, Whelan J, Bosnich B. J Am Chem Soc, 1992, 114: 2121–2128

    Article  CAS  Google Scholar 

  5. Jensen JF, Svendsen BY, la Cour TV, Pedersen HL, Johannsen M. J Am Chem Soc, 2002, 124: 4558–4559

    Article  CAS  PubMed  Google Scholar 

  6. Gribble Jr. MW, Pirnot MT, Bandar JS, Liu RY, Buchwald SL. J Am Chem Soc, 2017, 139: 2192–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng B, Lu P, Zhang H, Cheng X, Lu Z. J Am Chem Soc, 2017, 139: 9439–9442

    Article  CAS  PubMed  Google Scholar 

  8. Scharfbier J, Gross BM, Oestreich M. Angew Chem Int Ed, 2020, 59: 1577–1580

    Article  CAS  Google Scholar 

  9. Huo J, Zhong K, Xue Y, Lyu MM, Ping Y, Liu Z, Lan Y, Wang J. J Am Chem Soc, 2021, 143: 12968–12973

    Article  CAS  PubMed  Google Scholar 

  10. Huang ZD, Ding R, Wang P, Xu YH, Loh TP. Chem Commun, 2016, 52: 5609–5612

    Article  CAS  Google Scholar 

  11. Balakrishnan V, Murugesan V, Chindan B, Rasappan R. Org Lett, 2021, 23: 1333–1338

    Article  CAS  PubMed  Google Scholar 

  12. Su B, Zhou TG, Xu PL, Shi ZJ, Hartwig JF. Angew Chem Int Ed, 2017, 56: 7205–7208

    Article  CAS  Google Scholar 

  13. Park D, Baek D, Lee CW, Ryu H, Park S, Han W, Hong S. Tetrahedron, 2021, 79: 131811–131818

    Article  CAS  Google Scholar 

  14. Huang MY, Yang JM, Zhao YT, Zhu SF. ACS Catal, 2019, 9: 5353–5357

    Article  CAS  Google Scholar 

  15. Yang LL, Evans D, Xu B, Li WT, Li ML, Zhu SF, Houk KN, Zhou QL. J Am Chem Soc, 2020, 142: 12394–12399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jagannathan JR, Fettinger JC, Shaw JT, Franz AK. J Am Chem Soc, 2020, 142: 11674–11679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang B, Cao K, Zhao G, Yang J, Zhang J. J Am Chem Soc, 2022, 144: 15468–15474

    Article  CAS  PubMed  Google Scholar 

  18. Zhang ZM, Chen P, Li W, Niu Y, Zhao XL, Zhang J. Angew Chem Int Ed, 2014, 53: 4350–4354

    Article  CAS  Google Scholar 

  19. Su X, Zhou W, Li Y, Zhang J. Angew Chem Int Ed, 2015, 54: 6874–6877

    Article  CAS  Google Scholar 

  20. Wang Y, Zhang P, Di X, Dai Q, Zhang ZM, Zhang J. Angew Chem Int Ed, 2017, 56: 15905–15909

    Article  CAS  Google Scholar 

  21. Zhang ZM, Xu B, Qian Y, Wu L, Wu Y, Zhou L, Liu Y, Zhang J. Angew Chem Int Ed, 2018, 57: 10373–10377

    Article  CAS  Google Scholar 

  22. Han J, Zhou W, Zhang PC, Wang H, Zhang R, Wu HH, Zhang J. ACS Catal, 2019, 9: 6890–6895

    Article  CAS  Google Scholar 

  23. Qiu H, Chen X, Zhang J. Chem Sci, 2019, 10: 10510–10515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin T, Pan Z, Tu Y, Zhu S, Wu H, Liu Y, Li Z, Zhang J. Angew Chem Int Ed, 2020, 59: 22957–22962

    Article  CAS  Google Scholar 

  25. Zhao G, Wu Y, Wu HH, Yang J, Zhang J. J Am Chem Soc, 2021, 143: 17983–17988

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Q-L. Privileged Chiral Ligands and Catalysts. Hoboken: John Wiley & Sons, 2011

    Book  Google Scholar 

  27. Xiao B, Sun TY, Wu YD. J Org Chem, 2022, 87: 10958–10966

    Article  CAS  PubMed  Google Scholar 

  28. Han J, Xiao B, Sun TY, Wang M, Jin L, Yu W, Wang Y, Fang DM, Zhou Y, Wu XF, Wu YD, Liao J. J Am Chem Soc, 2022, 144: 21800–21807

    Article  CAS  PubMed  Google Scholar 

  29. Zhang S, Perveen S, Ouyang YZ, et al. Angew Chem Int Ed, 2022, 61

  30. Tse MH, Zhong RL, Kwong FY. ACS Catal, 2022, 12: 3507–3515

    Article  CAS  Google Scholar 

  31. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J Phys Chem, 1994, 98: 11623–11627

    Article  CAS  Google Scholar 

  32. Hay PJ, Wadt WR. J Chem Phys, 1985, 82: 270–283

    Article  CAS  Google Scholar 

  33. Huzinaga S. Comput Phys Rep, 1985, 2: 281–339

    Article  Google Scholar 

  34. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G. Chem Phys Lett, 1993, 208: 111–114

    Article  CAS  Google Scholar 

  35. Kulkarni AD, Truhlar DG. J Chem Theor Comput, 2011, 7: 2325–2332

    Article  CAS  Google Scholar 

  36. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H. Theoret Chim Acta, 1990, 77: 123–141

    Article  CAS  Google Scholar 

  37. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR. J Comput Chem, 1983, 4: 294–301

    Article  CAS  Google Scholar 

  38. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA. J Chem Phys, 1982, 77: 3654–3665

    Article  CAS  Google Scholar 

  39. Krishnan R, Binkley JS, Seeger R, Pople JA. J Chem Phys, 1980, 72: 650–654

    Article  CAS  Google Scholar 

  40. McLean AD, Chandler GS. J Chem Phys, 1980, 72: 5639–5648

    Article  CAS  Google Scholar 

  41. Marenich AV, Cramer CJ, Truhlar DG. J Phys Chem B, 2009, 113: 6378–6396

    Article  CAS  PubMed  Google Scholar 

  42. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  43. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W. J Chem Theor Comput, 2011, 7: 625–632

    Article  Google Scholar 

  44. Humphrey W, Dalke A, Schulten K. J Mol Graphics, 1996, 14: 33–38

    Article  CAS  Google Scholar 

  45. Brookhart M, Green MLH, Parkin G. Proc Natl Acad Sci USA, 2007, 104: 6908–6914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Piers WE, Bercaw JE. J Am Chem Soc, 1990, 112: 9406–9407

    Article  CAS  Google Scholar 

  47. Holaday MGD, Tarafdar G, Kumar A, Reddy MLP, Srinivasan A. Dalton Trans, 2014, 43: 7699–7703

    Article  Google Scholar 

  48. Race JJ, Burnage AL, Boyd TM, Heyam A, Martínez-Martínez AJ, Macgregor SA, Weller AS. Chem Sci, 2021, 12: 8832–8843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yue X, Shan C, Qi X, Luo X, Zhu L, Zhang T, Li Y, Li Y, Bai R, Lan Y. Dalton Trans, 2018, 47: 1819–1826

    Article  CAS  PubMed  Google Scholar 

  50. Fukui K. Acc Chem Res, 1981, 14: 363–368

    Article  CAS  Google Scholar 

  51. Pearson RG. J Am Chem Soc, 1963, 85: 3533–3539

    Article  CAS  Google Scholar 

  52. Feng J, Shi J, Wei L, Liu M, Li Z, Xiao Y, Zhang J. Angew Chem Int Ed, 2023, 62: e202215407

    Article  CAS  Google Scholar 

  53. Jia T, Zhang M, McCollom SP, Bellomo A, Montel S, Mao J, Dreher SD, Welch CJ, Regalado EL, Williamson RT, Manor BC, Tomson NC, Walsh PJ. J Am Chem Soc, 2017, 139: 8337–8345

    Article  CAS  PubMed  Google Scholar 

  54. Bonney KJ, Schoenebeck F. Chem Soc Rev, 2014, 43: 6609–6638

    Article  CAS  PubMed  Google Scholar 

  55. Uehling MR, King RP, Krska SW, Cernak T, Buchwald SL. Science, 2019, 363: 405–408

    Article  CAS  PubMed  Google Scholar 

  56. Torres GM, Liu Y, Arndtsen BA. Science, 2020, 368: 318–323

    Article  CAS  PubMed  Google Scholar 

  57. Ariafard A, Lin Z. Organometallics, 2006, 25: 4030–4033

    Article  CAS  Google Scholar 

  58. Qi X, Lan Y. Acc Chem Res, 2021, 54: 2905–2915

    Article  CAS  PubMed  Google Scholar 

  59. Labinger JA. Organometallics, 2015, 34: 4784–4795

    Article  CAS  Google Scholar 

  60. Liao S, Sun XL, Tang Y. Acc Chem Res, 2014, 47: 2260–2272

    Article  CAS  PubMed  Google Scholar 

  61. Zhou J, Tang Y. J Am Chem Soc, 2002, 124: 9030–9031

    Article  CAS  PubMed  Google Scholar 

  62. Zhou YY, Wang LJ, Li J, Sun XL, Tang Y. J Am Chem Soc, 2012, 134: 9066–9069

    Article  CAS  PubMed  Google Scholar 

  63. Zeineddine A, Estévez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. Nat Commun, 2017, 8: 565–573

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kang QK, Lin Y, Li Y, Shi H. J Am Chem Soc, 2020, 142: 3706–3711

    Article  CAS  PubMed  Google Scholar 

  65. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W. J Chem Theor Comput, 2011, 7: 625–632

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21933004), the Key-Area Research and Development Program of Guangdong Province (2020B010188001, 2020B0101350001), the Shenzhen Fundamental Research Program (GXWD20201231165807007-20200812124825001) and the Shenzhen Bay Laboratory Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-Yu Sun, Junliang Zhang or Yun-Dong Wu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without type-setting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

11426_2023_1701_MOESM1_ESM.docx

Theoretical Insight into the Activity and Selectivity in Palladium/Ming-Phos-Catalyzed Three-Component Asymmetric Synthesis of gem-Diarylmethine Silanes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, B., Sun, TY., Zhang, J. et al. Theoretical insight into the activity and selectivity in palladium/Ming-Phos-catalyzed three-component asymmetric synthesis of gem-diarylmethine silanes. Sci. China Chem. 66, 2817–2827 (2023). https://doi.org/10.1007/s11426-023-1701-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1701-7

Navigation