Skip to main content
Log in

Unraveling the amplified chiroptical responses of rylene-bladed quintuple [6]helicenes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Unraveling the key structural features to maximize the chiroptical properties is of significance for developing high-performance chiral materials. Here we present our first attempt to elucidate and understand the molecular design of excellent chiroptical properties via the combination of multiplicity and the alignment of subhelicenes. Two stereoisomeric PDI-bladed quintuple [6]helicenes, namely D5-CRP and C2-CRP, were revealed to show distinct spatial arrangements of subhelicenes. Circular dichroism (CD) spectra showed that the Cotton effects (Δε) are reaching 1,412 mol−1 L cm−1 for D5-CRP and 669 mol−1 L cm−1 for C2-CRP in the visible spectrum. The greatly amplified Δε relative to the smaller analogue NPDH arises from the circular annulation of helicenes and high molecular symmetry that could significantly regulate the transition dipole moments and thereby make them tend to be (anti)parallel, as supported by TDDFT calculations for the rotatory strength (R). Consequently, the maximal dissymmetry factors (|gabs| and |glum|) of this kind of chiral molecular carbon imides were estimated to be up to 0.021 and 0.012, respectively. This study provides a deep insight into the chiroptical properties of complicated chiral systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen Y, Chen CF. Chem Rev, 2012, 112: 1463–1535

    Article  CAS  PubMed  Google Scholar 

  2. Gingras M. Chem Soc Rev, 2013, 42: 968–1006

    Article  CAS  PubMed  Google Scholar 

  3. Dhbaibi K, Favereau L, Crassous J. Chem Rev, 2019, 119: 8846–8953

    Article  CAS  PubMed  Google Scholar 

  4. Albano G, Pescitelli G, Di Bari L. Chem Rev, 2020, 120: 10145–10243

    Article  CAS  PubMed  Google Scholar 

  5. Saal F, Zhang F, Holzapfel M, Stolte M, Michail E, Moos M, Schmiedel A, Krause AM, Lambert C, Würthner F, Ravat P. J Am Chem Soc, 2020, 142: 21298–21303

    Article  CAS  PubMed  Google Scholar 

  6. Zhao T, Han J, Duan P, Liu M. Acc Chem Res, 2020, 53: 1279–1292

    Article  CAS  PubMed  Google Scholar 

  7. Sato S, Yoshii A, Takahashi S, Furumi S, Takeuchi M, Isobe H. Proc Natl Acad Sci USA, 2017, 114: 13097–13101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Y, Ma Z, Wang Z, Jiang W. J Am Chem Soc, 2022, 144: 11397–11404

    Article  CAS  PubMed  Google Scholar 

  9. Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Sci China Chem, 2021, 64: 2060–2104

    Article  CAS  Google Scholar 

  10. Yang Y, da Costa RC, Fuchter MJ, Campbell AJ. Nat Photon, 2013, 7: 634–638

    Article  CAS  Google Scholar 

  11. Wang J, Zhuang G, Chen M, Lu D, Li Z, Huang Q, Jia H, Cui S, Shao X, Yang S, Du P. Angew Chem Int Ed, 2020, 59: 1619–1626

    Article  CAS  Google Scholar 

  12. Atzori M, Dhbaibi K, Douib H, Grasser M, Dorcet V, Breslavetz I, Paillot K, Cador O, Rikken GLJA, Le Guennic B, Crassous J, Pointillart F, Train C. J Am Chem Soc, 2021, 143: 2671–2675

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka H, Ikenosako M, Kato Y, Fujiki M, Inoue Y, Mori T. Commun Chem, 2018, 1: 38

    Article  Google Scholar 

  14. Sehnal P, Stará IG, Šaman D, Tichý M, Mišek J, Cvačka J, Rulíšek L, Chocholoušová J, Vacek J, Goryl G, Szymonski M, Císařová I, Starý I. Proc Natl Acad Sci USA, 2009, 106: 13169–13174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mori K, Murase T, Fujita M. Angew Chem Int Ed, 2015, 54: 6847–6851

    Article  CAS  Google Scholar 

  16. Tang Y, Cook TA, Cohen AE. J Phys Chem A, 2009, 113: 6213–6216

    Article  CAS  PubMed  Google Scholar 

  17. Arrico L, Di Bari L, Zinna F. Chem Eur J, 2021, 27: 2920–2934

    Article  CAS  PubMed  Google Scholar 

  18. Rulíšek L, Exner O, Cwiklik L, Jungwirth P, Starý I, Pospíšil L, Havlas Z. J Phys Chem C, 2007, 111: 14948–14955

    Article  Google Scholar 

  19. Qiu Z, Ju CW, Frédéric L, Hu Y, Schollmeyer D, Pieters G, Müllen K, Narita A. J Am Chem Soc, 2021, 143: 4661–4667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanaka H, Inoue Y, Mori T. ChemPhotoChem, 2018, 2: 386–402

    Article  CAS  Google Scholar 

  21. Mori T. Chem Rev, 2021, 121: 2373–2412

    Article  CAS  PubMed  Google Scholar 

  22. Kato K, Segawa Y, Itami K. Synlett, 2019, 30: 370–377

    Article  CAS  Google Scholar 

  23. Li C, Yang Y, Miao Q. Chem Asian J, 2018, 13: 884–894

    Article  CAS  PubMed  Google Scholar 

  24. Li JK, Chen XY, Guo YL, Wang XC, Sue ACH, Cao XY, Wang XY. J Am Chem Soc, 2021, 143: 17958–17963

    Article  CAS  PubMed  Google Scholar 

  25. Liu B, Böckmann M, Jiang W, Doltsinis NL, Wang Z. J Am Chem Soc, 2020, 142: 7092–7099

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Song I, Ahn J, Han M, Linares M, Surin M, Zhang HJ, Oh JH, Lin J. Nat Commun, 2021, 12: 142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yanagi T, Tanaka T, Yorimitsu H. Chem Sci, 2021, 12: 2784–2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma S, Gu J, Lin C, Luo Z, Zhu Y, Wang J. J Am Chem Soc, 2020, 142: 16887–16893

    Article  CAS  PubMed  Google Scholar 

  29. Roy M, Berezhnaia V, Villa M, Vanthuyne N, Giorgi M, Naubron JV, Poyer S, Monnier V, Charles L, Carissan Y, Hagebaum-Reignier D, Rodriguez J, Gingras M, Coquerel Y. Angew Chem Int Ed, 2020, 59: 3264–3271

    Article  CAS  Google Scholar 

  30. Liu G, Liu Y, Zhao C, Li Y, Wang Z, Tian H. Angew Chem Int Ed, 2023, 62: e202214769

    CAS  Google Scholar 

  31. Wu YF, Ying SW, Su LY, Du JJ, Zhang L, Chen BW, Tian HR, Xu H, Zhang ML, Yan X, Zhang Q, Xie SY, Zheng LS. J Am Chem Soc, 2022, 144: 10736–10742

    Article  CAS  PubMed  Google Scholar 

  32. Kato K, Segawa Y, Scott LT, Itami K. Angew Chem Int Ed, 2018, 57: 1337–1341

    Article  CAS  Google Scholar 

  33. Wei T, Hauke F, Andreas H. Acc Chem Res, 2019, 52: 2037–2045

    Article  CAS  PubMed  Google Scholar 

  34. Jiang W, Wang Z. J Am Chem Soc, 2022, 144: 14976–14991

    Article  CAS  PubMed  Google Scholar 

  35. Feng J, Wu Y, Yu Q, Liu Y, Jiang W, Wang D, Wang Z. CCS Chem, 2020, 2: 271–279

    Article  CAS  Google Scholar 

  36. Evans PJ, Ouyang J, Favereau L, Crassous J, Fernández I, Perles J, Martin N. Angew Chem Int Ed, 2018, 57: 6774–6779

    Article  CAS  Google Scholar 

  37. Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem Rev, 2016, 116: 962–1052

    Article  PubMed  Google Scholar 

  38. Jiang W, Li Y, Wang Z. Acc Chem Res, 2014, 47: 3135–3147

    Article  CAS  PubMed  Google Scholar 

  39. Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR. Adv Mater, 2011, 23: 268–284

    Article  CAS  PubMed  Google Scholar 

  40. Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Angew Chem Int Ed, 2022, 61: e202202532

    CAS  Google Scholar 

  41. Wu YT, Siegel JS. Chem Rev, 2006, 106: 4843–4867

    Article  CAS  PubMed  Google Scholar 

  42. Juríček M, Strutt NL, Barnes JC, Butterfield AM, Dale EJ, Baldridge KK, Stoddart JF, Siegel JS. Nat Chem, 2014, 6: 222–228

    Article  PubMed  Google Scholar 

  43. Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat Chem, 2013, 5: 739–744

    Article  CAS  PubMed  Google Scholar 

  44. Meng D, Liu G, Xiao C, Shi Y, Zhang L, Jiang L, Baldridge KK, Li Y, Siegel JS, Wang Z. J Am Chem Soc, 2019, 141: 5402–5408

    Article  CAS  PubMed  Google Scholar 

  45. Schuster NJ, Paley DW, Jockusch S, Ng F, Steigerwald ML, Nuckolls C. Angew Chem Int Ed, 2016, 55: 13519–13523

    Article  CAS  Google Scholar 

  46. Yoshida Y, Nakamura Y, Kishida H, Hayama H, Nakano Y, Yamochi H, Saito G. CrystEngComm, 2017, 19: 3626–3632

    Article  CAS  Google Scholar 

  47. Hosokawa T, Takahashi Y, Matsushima T, Watanabe S, Kikkawa S, Azumaya I, Tsurusaki A, Kamikawa K. J Am Chem Soc, 2017, 139: 18512–18521

    Article  CAS  PubMed  Google Scholar 

  48. Berezhnaia V, Roy M, Vanthuyne N, Villa M, Naubron JV, Rodriguez J, Coquerel Y, Gingras M. J Am Chem Soc, 2017, 139: 18508–18511

    Article  CAS  PubMed  Google Scholar 

  49. Cruz CM, Márquez IR, Castro-Fernández S, Cuerva JM, Maçôas E, Campaña AG. Angew Chem Int Ed, 2019, 58: 8068–8072

    Article  CAS  Google Scholar 

  50. Fukunaga TM, Sawabe C, Matsuno T, Takeya J, Okamoto T, Isobe H. Angew Chem Int Ed, 2021, 60: 19097–19101

    Article  CAS  Google Scholar 

  51. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  52. Sánchez-Carnerero EM, Agarrabeitia AR, Moreno F, Maroto BL, Muller G, Ortiz MJ, de la Moya S. Chem Eur J, 2015, 21: 13488–13500

    Article  PubMed  Google Scholar 

  53. Kubo H, Hirose T, Nakashima T, Kawai T, Hasegawa J, Matsuda K. J Phys Chem Lett, 2021, 12: 686–695

    Article  CAS  PubMed  Google Scholar 

  54. Hasegawa M, Nojima Y, Mazaki Y. ChemPhotoChem, 2021, 5: 1042–1058

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22122503, 22235005, and 22275112), and the Shandong Provincial Natural Science Foundation (ZR2019ZD50). We thank Dr. Dong Meng for his helpful discussions on the crystallo-graphic structural analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Wang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Liu, Y., Jiang, W. et al. Unraveling the amplified chiroptical responses of rylene-bladed quintuple [6]helicenes. Sci. China Chem. 66, 2400–2407 (2023). https://doi.org/10.1007/s11426-023-1686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1686-4

Navigation