Skip to main content
Log in

Carbon-based nanoarrays embedded with Ce-doped ultrasmall Co2P nanoparticles enable efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen production

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The electrooxidation of 5-hydroxymethylfurfural (HMFOR) not only offers a green route to attain high-value 2,5-furandicarboxylic acid (FDCA) from biomass, but also is considered as a promising approach to replace the kinetically sluggish OER for future hydrogen production. Herein, we report the construction and structural optimization of Ce-doped ultrasmall Co2P nanoparticles (NPs) in carbon-based nanoarrays to boost HER-coupled HMFOR. We demonstrate that the electronic structure of Co-based electrocatalysts can be positively regulated by Ce doping and the optimized Ce-Co2P-based electrocatalyst only require a low voltage of 1.20 V vs. RHE to achieve 10 mA cm−2 for HMFOR with an excellent FDCA Faraday efficiency (FEFDCA) of 98.5%, which are superior to its Ce-free counterpart (1.29 V vs. RHE; FEFDCA=83.9 %). When being assembled into a HER-coupled HMFOR system, this bifunctional electrocatalyst can achieve 50 mA cm−2 with an ultralow voltage of 1.46 V, which is reduced by 210 mV as compared with that of its Ce-free counterpart (1.67 V). Quasi-operando experiments and DFT calculations further reveal the significant roles of Ce doping in promoting the charge transfer between active sites and HMF, and reducing the free energy barrier of intermediate (*HMFCA) dehydrogenation. This study provides new insights into the underlying mechanisms of Ce doping into metal phosphides for boosting HER-coupled HMFOR, developing a facile methodology to construct efficient electrocatalysts for energy storage/conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danish M, Ahmad T. Renew Sustain Energy Rev, 2018, 87: 1–21

    Article  CAS  Google Scholar 

  2. Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF. Chem Soc Rev, 2018, 47: 8349–8402

    Article  CAS  PubMed  Google Scholar 

  3. Venkata Mohan S, Nikhil GN, Chiranjeevi P, Nagendranatha Reddy C, Rohit MV, Kumar AN, Sarkar O. Bioresource Tech, 2016, 215: 2–12

    Article  CAS  Google Scholar 

  4. Maerten S, Kumpidet C, Voß D, Bukowski A, Wasserscheid P, Albert J. Green Chem, 2020, 22: 4311–4320

    Article  CAS  Google Scholar 

  5. Delima RS, Stankovic MD, MacLeod BP, Fink AG, Rooney MB, Huang A, Jansonius RP, Dvorak DJ, Berlinguette CP. Energy Environ Sci, 2022, 15: 215–224

    Article  CAS  Google Scholar 

  6. Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Chem Soc Rev, 2020, 49: 4273–4306

    Article  CAS  PubMed  Google Scholar 

  7. Fu Q, Liu D, Niu W, Zhang S, Chen R, Wang Y, Zhao P, Jiang H, Zhao Y, Yang L, Yan L, Wang H, Zhao X. Fuel, 2022, 327: 125085

    Article  CAS  Google Scholar 

  8. Zhou L, Zhu X, Su H, Lin H, Lyu Y, Zhao X, Chen C, Zhang N, Xie C, Li Y, Lu Y, Zheng J, Johannessen B, Jiang SP, Liu Q, Li Y, Zou Y, Wang S. Sci China Chem, 2021, 64: 1586–1595

    Article  CAS  Google Scholar 

  9. Xia Z, Li Y, Wu J, Huang YC, Zhao W, Lu Y, Pan Y, Yue X, Wang Y, Dong CL, Wang S, Zou Y. Sci China Chem, 2022, 65: 2588–2595

    Article  CAS  Google Scholar 

  10. Payne KAP, Marshall SA, Fisher K, Cliff MJ, Cannas DM, Yan C, Heyes DJ, Parker DA, Larrosa I, Leys D. ACS Catal, 2019, 9: 2854–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eerhart AJJE, Faaij APC, Patel MK. Energy Environ Sci, 2012, 5: 6407

    Article  CAS  Google Scholar 

  12. Xu Y, Jia X, Ma J, Gao J, Xia F, Li X, Xu J. ACS Sustain Chem Eng, 2018, 6: 2888–2892

    Article  CAS  Google Scholar 

  13. Shao Y, Hu X, Zhang Z, Sun K, Gao G, Wei T, Zhang S, Hu S, Xiang J, Wang Y. Green Energy Environ, 2019, 4: 400–413

    Article  Google Scholar 

  14. Zhang Z, Deng K. ACS Catal, 2015, 5: 6529–6544

    Article  CAS  Google Scholar 

  15. Liu H, Tang X, Zeng X, Sun Y, Ke X, Li T, Zhang J, Lin L. Green Energy Environ, 2022, 7: 900–932

    Article  CAS  Google Scholar 

  16. Chen C, Wang L, Zhu B, Zhou Z, El-Hout SI, Yang J, Zhang J. J Energy Chem, 2021, 54: 528–554

    Article  CAS  Google Scholar 

  17. Zhu B, Chen C, Huai L, Zhou Z, Wang L, Zhang J. Appl Catal B-Environ, 2021, 297: 120396

    Article  CAS  Google Scholar 

  18. Yang Y, Mu T. Green Chem, 2021, 23: 4228–4254

    Article  CAS  Google Scholar 

  19. Ma C, Fang P, Mei TS. ACS Catal, 2018, 8: 7179–7189

    Article  CAS  Google Scholar 

  20. Giannakoudakis DA, Colmenares JC, Tsiplakides D, Triantafyllidis KS. ACS Sustain Chem Eng, 2021, 9: 1970–1993

    Article  CAS  Google Scholar 

  21. Zhou H, Li Z, Ma L, Duan H. Chem Commun, 2022, 58: 897–907

    Article  CAS  Google Scholar 

  22. Zhang B, Fu H, Mu T. Green Chem, 2022, 24: 877–884

    Article  Google Scholar 

  23. Yang G, Jiao Y, Yan H, Xie Y, Wu A, Dong X, Guo D, Tian C, Fu H. Adv Mater, 2020, 32: 2000455

    Article  CAS  Google Scholar 

  24. Weidner J, Barwe S, Sliozberg K, Piontek S, Masa J, Apfel UP, Schuhmann W. Beilstein J Org Chem, 2018, 14: 1436–1445

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang D, Chen C, Wang S. Sci China Chem, 2022, 66: 1052–1072

    Article  Google Scholar 

  26. Arshad F, Haq T, Hussain I, Sher F. ACS Appl Energy Mater, 2021, 4: 8685–8701

    Article  CAS  Google Scholar 

  27. Jiang N, You B, Boonstra R, Terrero Rodriguez IM, Sun Y. ACS Energy Lett, 2016, 1: 386–390

    Article  CAS  Google Scholar 

  28. Wang H, Li C, An J, Zhuang Y, Tao S. J Mater Chem A, 2021, 9: 18421–18430

    Article  CAS  Google Scholar 

  29. Qu D, He S, Chen L, Ye Y, Ge Q, Cong H, Jiang N, Ha Y. Front Chem, 2022, 10: 1055865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun Y, Wang J, Qi Y, Li W, Wang C. Adv Sci, 2022, 9: 2200957

    Article  CAS  Google Scholar 

  31. An L, Zhao X, Zhao T, Wang D. Energy Environ Sci, 2021, 14: 2620–2638

    Article  CAS  Google Scholar 

  32. Li F, Bu Y, Lv Z, Mahmood J, Han GF, Ahmad I, Kim G, Zhong Q, Baek JB. Small, 2017, 13: 1701167

    Article  Google Scholar 

  33. Zhao Y, Dongfang N, Triana CA, Huang C, Erni R, Wan W, Li J, Stoian D, Pan L, Zhang P, Lan J, Iannuzzi M, Patzke GR. Energy Environ Sci, 2022, 15: 727–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen D, Chen Z, Zhang X, Lu Z, Xiao S, Xiao B, Singh CV. J Energy Chem, 2021, 52: 155–162

    Article  CAS  Google Scholar 

  35. Xiao X, Tao L, Li M, Lv X, Huang D, Jiang X, Pan H, Wang M, Shen Y. Chem Sci, 2018, 9: 1970–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu Y, Fang Y, Li P, Xiao Z, Zheng H, Yuan H, Cao C, Yang Y, Liu Y. Nat Commun, 2021, 12: 2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiong L, Bi J, Wang L, Yang S. Int J Hydrogen Energy, 2018, 43: 20372–20381

    Article  CAS  Google Scholar 

  38. Gao W, Yan M, Cheung HY, Xia Z, Zhou X, Qin Y, Wong CY, Ho JC, Chang CR, Qu Y. Nano Energy, 2017, 38: 290–296

    Article  CAS  Google Scholar 

  39. Kim JH, Shin K, Kawashima K, Youn DH, Lin J, Hong TE, Liu Y, Wygant BR, Wang J, Henkelman G, Mullins CB. ACS Catal, 2018, 8: 4257–4265

    Article  CAS  Google Scholar 

  40. Xu H, Shan C, Wu X, Sun M, Huang B, Tang Y, Yan CH. Energy Environ Sci, 2020, 13: 2949–2956

    Article  CAS  Google Scholar 

  41. Ng JWD, García-Melchor M, Bajdich M, Chakthranont P, Kirk C, Vojvodic A, Jaramillo TF. Nat Energy, 2016, 1: 16053

    Article  CAS  Google Scholar 

  42. He F, Xia N, Zheng Y, Zhang Y, Fan H, Ma D, Liu Q, Hu X. ACS Appl Mater Interfaces, 2021, 13: 8488–8496

    Article  CAS  PubMed  Google Scholar 

  43. Jiang Z, Song S, Zheng X, Liang X, Li Z, Gu H, Li Z, Wang Y, Liu S, Chen W, Wang D, Li Y. J Am Chem Soc, 2022, 144: 19619–19626

    Article  CAS  PubMed  Google Scholar 

  44. Wu Y, Chen L, Yang X, Li Y, Shen K. Sci China Chem, 2022, 65: 2450–2461

    Article  CAS  Google Scholar 

  45. Li H, Qin Z, Yang X, Chen X, Li Y, Shen K. ACS Cent Sci, 2022, 8: 718–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qin Z, Li H, Yang X, Chen L, Li Y, Shen K. Appl Catal B-Environ, 2022, 307: 121163

    Article  CAS  Google Scholar 

  47. Guo T, Chen L, Li Y, Shen K. Small, 2022, 18: 2107739

    Article  CAS  Google Scholar 

  48. Xin Y, Wang F, Chen L, Li Y, Shen K. Green Chem, 2022, 24: 6544–6555

    Article  CAS  Google Scholar 

  49. Song WW, Wang B, Li CN, Wang SM, Han ZB. J Mater Chem A, 2022, 10: 3710–3721

    Article  CAS  Google Scholar 

  50. Wang Z, Shen K, Chen L, Li Y. Sci China Chem, 2021, 65: 619–629

    Article  Google Scholar 

  51. Jebaslinhepzybai BT, Partheeban T, Gavali DS, Thapa R, Sasidharan M. Int J Hydrogen Energy, 2021, 46: 21924–21938

    Article  CAS  Google Scholar 

  52. Chen C, Tang ZQ, Li JY, Du CY, Ouyang T, Xiao K, Liu ZQ. Adv Funct Mater, 2022, 33: 2210143

    Article  Google Scholar 

  53. Shu X, Chen Q, Yang M, Liu M, Ma J, Zhang J. Adv Energy Mater, 2022, 13: 2202871

    Article  Google Scholar 

  54. Xu H, Cao J, Shan C, Wang B, Xi P, Liu W, Tang Y. Angew Chem Int Ed, 2018, 57: 8654–8658

    Article  CAS  Google Scholar 

  55. Deng X, Xu GY, Zhang YJ, Wang L, Zhang J, Li JF, Fu XZ, Luo JL. Angew Chem Int Ed, 2021, 60: 20535–20542

    Article  CAS  Google Scholar 

  56. Zhou B, Li Y, Zou Y, Chen W, Zhou W, Song M, Wu Y, Lu Y, Liu J, Wang Y, Wang S. Angew Chem Int Ed, 2021, 60: 22908–22914

    Article  CAS  Google Scholar 

  57. Chen W, Xie C, Wang Y, Zou Y, Dong CL, Huang YC, Xiao Z, Wei Z, Du S, Chen C, Zhou B, Ma J, Wang S. Chem, 2020, 6: 2974–2993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported from the Natural Science Foundation of Guangdong Province (2023B1515040005), the State Key Laboratory of Pulp and Paper Engineering (2022PY05), and the National Natural Science Foundation of China (22138003, 21825802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Shen.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2023_1666_MOESM1_ESM.pdf

Carbon-based nanoarrays embedded with Ce-doped ultrasmall Co2P nanoparticles enable efficient electrooxidation of 5-Hydroxymethylfurfural coupled with Hydrogen production

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Fu, H., Chen, L. et al. Carbon-based nanoarrays embedded with Ce-doped ultrasmall Co2P nanoparticles enable efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen production. Sci. China Chem. 66, 2141–2152 (2023). https://doi.org/10.1007/s11426-023-1666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1666-4

Keywords

Navigation