Skip to main content
Log in

Dynamic multi-color long-afterglow and cold-warm white light through phosphorescence resonance energy transfer in host-guest metal-organic frameworks

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Dynamic tuning of single-color and multi-color (including white-light) luminescence has attracted much attention for applications in various fields; however, effective systems are still scarcity to date. Herein, we report the construction of host-guest metal-organic frameworks (MOFs) serves as an effective strategy to achieve the excitation- and time-dependent long afterglow and white light emitting, simultaneously. The guest-induced structural distortion modulates the single-triplet state intersystem crossing, promotes ligand-to-ligand charge transfer (LLCT) in layer-column MOFs, and further boosts multiple exciton generation of triplet states for multi-color ultralong phosphorescence, as indicated by both experiment and density functional theory (DFT) calculation. By further doping of dyes into MOFs, white-light emitting with tunable color temperature can be facilely obtained, which has been further fabricated into white-light light-emitting diode (LED) with color rendering index of 88.4, higher than that of most as-reported pure inorganics and inorganic-organic hybrid systems. Therefore, this work not only describes a host-guest energy transfer route for dynamic tailoring wide range of color-tunable long-afterglow, but also explores the application prospect of new white-light materials with high color rendering and low blue light for promising display and lighting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang T, Su X, Zhang X, Nie X, Huang L, Zhang X, Sun X, Luo Y, Zhang G. Adv Mater, 2019, 31: 1904273

    Article  CAS  Google Scholar 

  2. Zhou G, Wong WY, Yao B, Xie Z, Wang L. Angew Chem Int Ed, 2007, 46: 1149–1151

    Article  CAS  Google Scholar 

  3. Kabe R, Notsuka N, Yoshida K, Adachi C. Adv Mater, 2016, 28: 655–660

    Article  PubMed  CAS  Google Scholar 

  4. Liang T, Guo Z, He Y, Wang Y, Li C, Li Z, Liu Z. Adv Sci, 2022, 9: 2104561

    Article  CAS  Google Scholar 

  5. Xiao F, Gao H, Lei Y, Dai W, Liu M, Zheng X, Cai Z, Huang X, Wu H, Ding D. Nat Commun, 2022, 13: 186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hendrikse SIS, Contreras-Montoya R, Ellis AV, Thordarson P, Steed JW. Chem Soc Rev, 2022, 51: 28–42

    Article  PubMed  CAS  Google Scholar 

  7. Zu G, Li S, He J, Zhang H, Fu H. J Phys Chem Lett, 2022, 13: 5461–5467

    Article  PubMed  CAS  Google Scholar 

  8. Sun Y, Liu S, Sun L, Wu S, Hu G, Pang X, Smith AT, Hu C, Zeng S, Wang W, Liu Y, Zheng M. Nat Commun, 2020, 11: 5591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Thomas H, Pastoetter DL, Gmelch M, Achenbach T, Schlögl A, Louis M, Feng X, Reineke S. Adv Mater, 2020, 32: 2000880

    Article  CAS  Google Scholar 

  10. Xie Z, Zhang X, Wang H, Huang C, Sun H, Dong M, Ji L, An Z, Yu T, Huang W. Nat Commun, 2021, 12: 3522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wang D, Gong J, Xiong Y, Wu H, Zhao Z, Wang D, Tang BZ. Adv Funct Mater, 2023, 33: 2208895

    Article  CAS  Google Scholar 

  12. Xu Q, Ma L, Lin X, Wang Q, Ma X. Chin Chem Lett, 2022, 33: 2965–2968

    Article  CAS  Google Scholar 

  13. Wu Y, Sutton GD, Halamicek MDS, Xing X, Bao J, Teets TS. Chem Sci, 2022, 13: 8804–8812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang X, Shi H, Ma H, Ye W, Song L, Zan J, Yao X, Ou X, Yang G, Zhao Z, Singh M, Lin C, Wang H, Jia W, Wang Q, Zhi J, Dong C, Jiang X, Tang Y, Xie X, Yang YM, Wang J, Chen Q, Wang Y, Yang H, Zhang G, An Z, Liu X, Huang W. Nat Photonics, 2021, 15: 187–192

    Article  CAS  Google Scholar 

  15. Kasha M. Discuss Faraday Soc, 1950, 9: 14–19

    Article  Google Scholar 

  16. Wang J, Lou XY, Tang J, Yang YW. J Polym Sci, 2022, 1–9

  17. Gao R, Kodaimati MS, Yan D. Chem Soc Rev, 2021, 50: 5564–5589

    Article  PubMed  CAS  Google Scholar 

  18. Nie F, Wang KZ, Yan D. Nat Commun, 2023, 14: 1654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Burger T, Velásquez-Hernández MJ, Saf R, Borisov SM, Slugovc C. J Mater Chem C, 2022, 10: 13262–13267

    Article  CAS  Google Scholar 

  20. Dai W, Niu X, Wu X, Ren Y, Zhang Y, Li G, Su H, Lei Y, Xiao J, Shi J, Tong B, Cai Z, Dong Y. Angew Chem Int Ed, 2022, 61: e202200236

    Article  CAS  Google Scholar 

  21. Rocca JD, Liu D, Lin W. Acc Chem Res, 2011, 44: 957–968

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F. Chem Soc Rev, 2015, 44: 6804–6849

    Article  PubMed  CAS  Google Scholar 

  23. Lin RB, Liu SY, Ye JW, Li XY, Zhang JP. Adv Sci, 2016, 3: 1500434

    Article  Google Scholar 

  24. Sutton AL, Melag L, Sadiq MM, Hill MR. Angew Chem Int Ed, 2022, 61: e202208305

    Article  CAS  Google Scholar 

  25. Liu XT, Qian BB, Zhang T, Nie HX, Xiao NN, Shi HY, Chang Z, Zhao YS, Bu XH. Matter, 2022, 5: 2918–2932

    Article  Google Scholar 

  26. Yaghi OM. Chem, 2022, 8: 1541–1543

    Article  CAS  Google Scholar 

  27. Ha DG, Wan R, Kim CA, Lin TA, Yang L, Van Voorhis T, Baldo MA, Dincă M. Nat Mater, 2022, 21: 1275–1281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhou B, Yan D. Adv Funct Mater, 2023, 33: 2300735

    Article  CAS  Google Scholar 

  29. Yang X, Yan D. Chem Sci, 2016, 7: 4519–4526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ahmed M. Inorg Chem Front, 2022, 9: 3003–3033

    Article  CAS  Google Scholar 

  31. Zhao Y, Ma L, Huang Z, Zhang J, Willner I, Ma X, Tian H. Adv Opt Mater, 2022, 10: 2102701

    Article  CAS  Google Scholar 

  32. Gui H, Huang Z, Yuan Z, Ma X. CCS Chem, 2022, 4: 173–181

    Article  CAS  Google Scholar 

  33. Fang RQ, Zhang XM. Inorg Chem, 2006, 45: 4801–4810

    Article  PubMed  CAS  Google Scholar 

  34. Liu S, Lin Y, Yan D. Sci Bull, 2022, 67: 2076–2084

    Article  CAS  Google Scholar 

  35. Chen T, Ma YJ, Yan D. Adv Funct Mater, 2023, 33: 2214962

    Article  CAS  Google Scholar 

  36. Chiu NC, Smith KT, Stylianou KC. Coord Chem Rev, 2022, 459: 214441

    Article  CAS  Google Scholar 

  37. Li H, Gu J, Wang Z, Wang J, He F, Li P, Tao Y, Li H, Xie G, Huang W, Zheng C, Chen R. Nat Commun, 2022, 13: 429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sun S, Ma L, Wang J, Ma X, Tian H. Natl Sci Rev, 2022, 9: nwab085

    Article  PubMed  CAS  Google Scholar 

  39. Gao R, Yan D. Chem Sci, 2017, 8: 590–599

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Q, Li J, Jiang W, Lin L, Ding J, Brik MG, Molokeev MS, Ni H, Wu M. J Mater Chem C, 2021, 9: 11292–11298

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Municipal Natural Science Foundation (JQ20003) and the National Natural Science Foundation of China (22275021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongpeng Yan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2023_1656_MOESM1_ESM.docx

Supporting Information: Dynamic multi-color long-afterglow and cold-warm white light through phosphorescence resonance energy transfer in host-guest metal-organic frameworks

Supplementary material, approximately 1.66 MB.

Supplementary material, approximately 1.39 MB.

Supplementary material, approximately 133 KB.

Supplementary material, approximately 258 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Lin, Y. & Yan, D. Dynamic multi-color long-afterglow and cold-warm white light through phosphorescence resonance energy transfer in host-guest metal-organic frameworks. Sci. China Chem. 66, 3532–3538 (2023). https://doi.org/10.1007/s11426-023-1656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1656-y

Navigation