Skip to main content
Log in

Dual ligands relay-promoted transformation of unstrained ketones to polyfluoroarenes and nitriles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

C-C bond activation has emerged as a powerful tool for the construction of complex molecules. Herein, we report a dual ligands relay-promoted transformation of unstrained aryl, alkenyl and alkynyl ketones to the corresponding polyfluoroarenes and nitriles via C-C (=O) bond cleavage and subsequent decarboxylative arylation process. Various polyfluoroarene and nitrile products are obtained in one pot under cyanide-free conditions. The protocol features high atom economy, broad functional group tolerance and excellent heterocyclic compatibility. The late-stage functionalization of the drug and natural product demonstrated the synthetic utility of our protocol. Furthermore, the decisive role of the dual ligands was clarified and the mechanistic rationale including the β−C elimination as the rate-limiting step was supported by detailed density functional theory (DFT) studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyer EA, Castellano RK, Diederich F. Angew Chem Int Ed, 2003, 42: 1210–1250

    Article  CAS  Google Scholar 

  2. Zahn A, Brotschi C, Leumann CJ. Chem Eur J, 2005, 11: 2125–2129

    Article  CAS  PubMed  Google Scholar 

  3. Muller K, Faeh C, Diederich F. Science, 2007, 317: 1881–1886

    Article  PubMed  Google Scholar 

  4. Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev, 2008, 37: 320–330

    Article  CAS  PubMed  Google Scholar 

  5. de Candia M, Liantonio F, Carotti A, De Cristofaro R, Altomare C. J Med Chem, 2009, 52: 1018–1028

    Article  CAS  PubMed  Google Scholar 

  6. Sakamoto Y, Suzuki T, Miura A, Fujikawa H, Tokito S, Taga Y. J Am Chem Soc, 2000, 122: 1832–1833

    Article  CAS  Google Scholar 

  7. Zacharias P, Gather M, Rojahn M, Nuyken O, Meerholz K. Angew Chem Int Ed, 2007, 46: 4388–4392

    Article  CAS  Google Scholar 

  8. Babudri F, Farinola GM, Naso F, Ragni R. Chem Commun, 2007, 43: 1003–1022

    Article  Google Scholar 

  9. Korenaga T, Kosaki T, Fukumura R, Ema T, Sakai T. Org Lett, 2005, 7: 4915–4917

    Article  CAS  PubMed  Google Scholar 

  10. Lafrance M, Rowley CN, Woo TK, Fagnou K. J Am Chem Soc, 2006, 128: 8754–8756

    Article  CAS  PubMed  Google Scholar 

  11. Do HQ, Daugulis O. J Am Chem Soc, 2008, 130: 1128–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wei Y, Kan J, Wang M, Su W, Hong M. Org Lett, 2009, 11: 3346–3349

    Article  CAS  PubMed  Google Scholar 

  13. Fan S, He CY, Zhang X. Chem Commun, 2010, 46: 4926–4928

    Article  CAS  Google Scholar 

  14. Fan S, Yang J, Zhang X. Org Lett, 2011, 13: 4374–4377

    Article  CAS  PubMed  Google Scholar 

  15. Dahiya A, Fricke C, Schoenebeck F. J Am Chem Soc, 2020, 142: 7754–7759

    Article  CAS  PubMed  Google Scholar 

  16. Gooßen LJ, Deng G, Levy LM. Science, 2006, 313: 662–664

    Article  PubMed  Google Scholar 

  17. Gooßen LJ, Rodríguez N, Melzer B, Linder C, Deng G, Levy LM. J Am Chem Soc, 2007, 129: 4824–4833

    Article  PubMed  Google Scholar 

  18. Gooßen L, Zimmermann B, Knauber T. Angew Chem Int Ed, 2008, 47: 7103–7106

    Article  Google Scholar 

  19. Gooßen LJ, Rodríguez N, Linder C. J Am Chem Soc, 2008, 130: 15248–15249

    Article  PubMed  Google Scholar 

  20. Rodríguez N, Gooßen LJ. Chem Soc Rev, 2011, 40: 5030–5048

    Article  PubMed  Google Scholar 

  21. Wei Y, Hu P, Zhang M, Su W. Chem Rev, 2017, 117: 8864–8907

    Article  CAS  PubMed  Google Scholar 

  22. Perry GJP, Larrosa I. Eur J Org Chem, 2017, 2017(25): 3517–3527

    Article  CAS  Google Scholar 

  23. Shang R, Fu Y, Wang Y, Xu Q, Yu HZ, Liu L. Angew Chem Int Ed, 2009, 48: 9350–9354

    Article  CAS  Google Scholar 

  24. Fu L, Chen Q, Nishihara Y. Org Lett, 2020, 22: 6388–6393

    Article  CAS  PubMed  Google Scholar 

  25. Becht JM, Drian CL. Org Lett, 2008, 10: 3161–3164

    Article  CAS  PubMed  Google Scholar 

  26. Sardzinski LW, Wertjes WC, Schnaith AM, Kalyani D. Org Lett, 2015, 17: 1256–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wei Y, Su W. J Am Chem Soc, 2010, 132: 16377–16379

    Article  CAS  PubMed  Google Scholar 

  28. He CY, Fan S, Zhang X. J Am Chem Soc, 2010, 132: 12850–12852

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Liu J, Sun CL, Li BJ, Shi ZJ. Org Lett, 2011, 13: 276–279

    Article  CAS  PubMed  Google Scholar 

  30. Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J Med Chem, 2010, 53: 7902–7917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miller JS, Manson JL. Acc Chem Res, 2001, 34: 563–570

    Article  CAS  PubMed  Google Scholar 

  32. Rappoport Z. The Chemistry of the Cyano Group. London: Interscience Publishers, 1970

    Google Scholar 

  33. Fleming FF, Fleming FF. Nat Prod Rep, 1999, 16: 597–606

    Article  CAS  Google Scholar 

  34. Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. 3rd ed. Hoboken: John Wiley and Sons, 2018

    Book  Google Scholar 

  35. Larock RC, Yao T. Formation of Nitriles, Carboxylic acids, and Derivatives by Oxidation, Substitution, and Addition. Comprehensive Organic Transformations. 3rd ed. Wiley: Weinheim, 2018

    Google Scholar 

  36. Anbarasan P, Schareina T, Beller M. Chem Soc Rev, 2011, 40: 5049–5067

    Article  CAS  PubMed  Google Scholar 

  37. Sundermeier M, Zapf A, Mutyala S, Baumann W, Sans J, Weiss S, Beller M. Chem Eur J, 2003, 9: 1828–1836

    Article  CAS  PubMed  Google Scholar 

  38. Kim J, Kim HJ, Chang S. Angew Chem Int Ed, 2012, 51: 11948–11959

    Article  CAS  Google Scholar 

  39. Culkin DA, Hartwig JF. J Am Chem Soc, 2002, 124: 9330–9331

    Article  CAS  PubMed  Google Scholar 

  40. Wu L, Hartwig JF. J Am Chem Soc, 2005, 127: 15824–15832

    Article  CAS  PubMed  Google Scholar 

  41. You J, Verkade JG. Angew Chem Int Ed, 2003, 42: 5051–5053

    Article  CAS  Google Scholar 

  42. Chen Y, Xu L, Jiang Y, Ma D. Angew Chem Int Ed, 2021, 60: 7082–7086

    Article  CAS  Google Scholar 

  43. Ping Y, Ding Q, Peng Y. ACS Catal, 2016, 6: 5989–6005

    Article  CAS  Google Scholar 

  44. Jun CH. Chem Soc Rev, 2004, 33: 610–618

    Article  CAS  PubMed  Google Scholar 

  45. Tobisu M, Chatani N. Chem Soc Rev, 2008, 37: 300–307

    Article  CAS  PubMed  Google Scholar 

  46. Nakao Y, Hiyama T. Pure Appl Chem, 2008, 80: 1097–1107

    Article  CAS  Google Scholar 

  47. Ruhland K. Eur J Org Chem, 2012, 2012(14): 2683–2706

    Article  CAS  Google Scholar 

  48. Chen F, Wang T, Jiao N. Chem Rev, 2014, 114: 8613–8661

    Article  CAS  PubMed  Google Scholar 

  49. Liu H, Feng M, Jiang X. Chem Asian J, 2014, 9: 3360–3389

    Article  CAS  PubMed  Google Scholar 

  50. Souillart L, Cramer N. Chem Rev, 2015, 115: 9410–9464

    Article  CAS  PubMed  Google Scholar 

  51. Murakami M, Ishida N. J Am Chem Soc, 2016, 138: 13759–13769

    Article  CAS  PubMed  Google Scholar 

  52. Tsang ASK, Kapat A, Schoenebeck F. J Am Chem Soc, 2016, 138: 518–526

    Article  CAS  PubMed  Google Scholar 

  53. Kim DS, Park WJ, Jun CH. Chem Rev, 2017, 117: 8977–9015

    Article  CAS  PubMed  Google Scholar 

  54. Song F, Gou T, Wang BQ, Shi ZJ. Chem Soc Rev, 2018, 47: 7078–7115

    Article  CAS  PubMed  Google Scholar 

  55. To CT, Chan KS. Eur J Org Chem, 2019, 2019(39): 6581–6591

    Article  CAS  Google Scholar 

  56. Deng L, Dong G. Trends Chem, 2020, 2: 183–198

    Article  CAS  Google Scholar 

  57. Hu X, Shao Y, Xie H, Chen X, Chen F, Ke Z, Jiang H, Zeng W. ACS Catal, 2020, 10: 8402–8408

    Article  CAS  Google Scholar 

  58. Walter MW. Nat Prod Rep, 2002, 19: 278–291

    Article  CAS  PubMed  Google Scholar 

  59. Ertl P, Schuhmann T. J Nat Prod, 2019, 82: 1258–1263

    Article  CAS  PubMed  Google Scholar 

  60. Huang H, Ji X, Wu W, Jiang H. Chem Soc Rev, 2015, 44: 1155–1171

    Article  CAS  PubMed  Google Scholar 

  61. Huang H, Cai J, Deng GJ. Org Biomol Chem, 2016, 14: 1519–1530

    Article  CAS  PubMed  Google Scholar 

  62. Walton JC. Acc Chem Res, 2014, 47: 1406–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blake JA, Pratt DA, Lin S, Walton JC, Mulder P, Ingold KU. J Org Chem, 2004, 69: 3112–3120

    Article  CAS  PubMed  Google Scholar 

  64. Kitamura M, Narasaka K. Chem Record, 2002, 2: 268–277

    Article  CAS  Google Scholar 

  65. Tsutsui H, Narasaka K. Chem Lett, 1999, 28: 45–46

    Article  Google Scholar 

  66. Faulkner A, Scott JS, Bower JF. J Am Chem Soc, 2015, 137: 7224–7230

    Article  CAS  PubMed  Google Scholar 

  67. Hazelden IR, Ma X, Langer T, Bower JF. Angew Chem Int Ed, 2016, 55: 11198–11202

    Article  CAS  Google Scholar 

  68. Bao X, Wang Q, Zhu J. Angew Chem Int Ed, 2017, 56: 9577–9581

    Article  CAS  Google Scholar 

  69. Chen C, Hou L, Cheng M, Su J, Tong X. Angew Chem Int Ed, 2015, 54: 3092–3096

    Article  CAS  Google Scholar 

  70. Liu S, Liebeskind LS. J Am Chem Soc, 2008, 130: 6918–6919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shuler SA, Yin G, Krause SB, Vesper CM, Watson DA. J Am Chem Soc, 2016, 138: 13830–13833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xu F, Shuler SA, Watson DA. Angew Chem Int Ed, 2018, 57: 12081–12085

    Article  CAS  Google Scholar 

  73. Xu F, Korch KM, Watson DA. Angew Chem Int Ed, 2019, 58: 13448–13451

    Article  CAS  Google Scholar 

  74. Tan Y, Hartwig JF. J Am Chem Soc, 2010, 132: 3676–3677

    Article  CAS  PubMed  Google Scholar 

  75. Nishimura T, Uemura S. J Am Chem Soc, 2000, 122: 12049–12050

    Article  CAS  Google Scholar 

  76. Zhao B, Shi Z. Angew Chem Int Ed, 2017, 56: 12727–12731

    Article  CAS  Google Scholar 

  77. Yu X, Chen J, Wang P, Yang M, Liang D, Xiao W. Angew Chem Int Ed, 2018, 57: 738–743

    Article  CAS  Google Scholar 

  78. Yu X, Zhao Q, Chen J, Chen J, Xiao W. Angew Chem Int Ed, 2018, 57: 15505–15509

    Article  CAS  Google Scholar 

  79. Wang T, Wang YN, Wang R, Zhang BC, Yang C, Li YL, Wang XS. Nat Commun, 2019, 10: 5373–5382

    Article  PubMed  PubMed Central  Google Scholar 

  80. Xiao T, Huang H, Anand D, Zhou L. Synthesis, 2020, 52: 1585–1601

    Article  CAS  Google Scholar 

  81. Yu XY, Chen JR, Xiao WJ. Chem Rev, 2021, 121: 506–561

    Article  CAS  PubMed  Google Scholar 

  82. Wang PZ, Gao Y, Chen J, Huan XD, Xiao WJ, Chen JR. Nat Commun, 2021, 12: 1815–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen J, Wang PZ, Lu B, Liang D, Yu XY, Xiao WJ, Chen JR. Org Lett, 2019, 21: 9763–9768

    Article  CAS  PubMed  Google Scholar 

  84. Zuo HD, Zhu SS, Hao WJ, Wang SC, Tu SJ, Jiang B. ACS Catal, 2021, 11: 6010–6019

    Article  CAS  Google Scholar 

  85. Zhu C, Chen F, Liu C, Zeng H, Yang Z, Wu W, Jiang H. J Org Chem, 2018, 83: 14713–14722

    Article  CAS  PubMed  Google Scholar 

  86. Xu Y, Qi X, Zheng P, Berti CC, Liu P, Dong G. Nature, 2019, 567: 373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li H, Ma B, Liu Q, Wang M, Wang Z, Xu H, Li L, Wang X, Dai H. Angew Chem Int Ed, 2020, 59: 14388–14393

    Article  CAS  Google Scholar 

  88. Xu H, Ma B, Fu Z, Li HY, Wang X, Wang ZY, Li LJ, Cheng TJ, Zheng M, Dai HX. ACS Catal, 2021, 11: 1758–1764

    Article  CAS  Google Scholar 

  89. Guo ZQ, Xu H, Wang X, Wang ZY, Ma B, Dai HX. Chem Commun, 2021, 57: 9716–9719

    Article  CAS  Google Scholar 

  90. Wang ML, Xu H, Li HY, Ma B, Wang ZY, Wang X, Dai HX. Org Lett, 2021, 23: 2147–2152

    Article  CAS  PubMed  Google Scholar 

  91. Wang ZY, Ma B, Xu H, Wang X, Zhang X, Dai HX. Org Lett, 2021, 23: 8291–8295

    Article  CAS  PubMed  Google Scholar 

  92. Reetz M. Angew Chem Int Ed, 2008, 47: 2556–2588

    Article  CAS  Google Scholar 

  93. Duursma A, Hoen R, Schuppan J, Hulst R, Minnaard AJ, Feringa BL. Org Lett, 2003, 5: 3111–3113

    Article  CAS  PubMed  Google Scholar 

  94. Meng G, Wang Z, Chan HSS, Chekshin N, Li Z, Wang P, Yu JQ. J Am Chem Soc, 2023, 145: 8198–8208

    Article  CAS  PubMed  Google Scholar 

  95. Chen H, Wedi P, Meyer T, Tavakoli G, van Gemmeren M. Angew Chem Int Ed, 2018, 57: 2497–2501

    Article  CAS  Google Scholar 

  96. Sinha SK, Panja S, Grover J, Hazra PS, Pandit S, Bairagi Y, Zhang X, Maiti D. J Am Chem Soc, 2022, 144: 12032–12042

    Article  CAS  PubMed  Google Scholar 

  97. Fors BP, Buchwald SL. J Am Chem Soc, 2010, 132: 15914–15917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen C, Peters JC, Fu GC. Nature, 2021, 596: 250–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim-Lee SH, Mauleón P, Gómez Arrayás R, Carretero JC. Chem, 2021, 7: 2212–2226

    Article  CAS  Google Scholar 

  100. Zhang Y, Ma J, Chen J, Meng L, Liang Y, Zhu S. Chem, 2021, 7: 3171–3188

    Article  CAS  Google Scholar 

  101. Sun Y, Guo J, Shen X, Lu Z. Nat Commun, 2022, 13: 650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang F, Greaney M. Angew Chem Int Ed, 2010, 49: 2768–2771

    Article  CAS  Google Scholar 

  103. Zhao H, Wei Y, Xu J, Kan J, Su W, Hong M. J Org Chem, 2011, 76: 882–893

    Article  CAS  PubMed  Google Scholar 

  104. Hu P, Zhang M, Jie X, Su W. Angew Chem Int Ed, 2012, 51: 227–231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Institute of Materia Medica, the Chinese Academy of Sciences, the National Natural Science Foundation of China (21772211, 21920102003), the Institutes for Drug Discovery and Development, Chinese Academy of Sciences (CASIMM0120163006), the Science and Technology Commission of Shanghai Municipality (17JC1405000, 18431907100), the Program of Shanghai Academic Research Leader (19XD1424600), the National Science & Technology Major Project “Key New Drug Creation and Manufacturing Program”, China (2018ZX09711002-006) and the China Postdoctoral Science Foundation (2019M662854).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Xu, Hui Gao or Hui-Xiong Dai.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest The authors declare no conflict of interest.

Supporting Information For

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZY., Xu, H., Zhang, X. et al. Dual ligands relay-promoted transformation of unstrained ketones to polyfluoroarenes and nitriles. Sci. China Chem. 66, 2037–2045 (2023). https://doi.org/10.1007/s11426-023-1653-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1653-3

Navigation