Skip to main content
Log in

Steering S-scheme charge transfer via interfacial dipoles induced by amine-containing polyelectrolytes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The lack of a robust interfacial driving source over multicomponent photocatalysts is an essential contributor to the sluggish spatial charge transfer across the heterointerface and severe carrier recombination, thereby rendering maneuvering charge transfer of composite materials a thorny issue. Herein, we demonstrate an electric dipole moment-driven charge transfer photosystem utilizing amine-containing polyfluorene polyelectrolyte (i.e., PFN) and inorganic semiconductor matrices (i.e., WO3) as the building blocks to direct the interfacial charge transfer, effectively targeting the photoexcited charge carriers to the active sites. Experimental results and theoretical simulations reveal that the electronic coupling interaction between the pendant electron-rich amine groups along the PFN backbone and WO3 surface enables the nonuniform charge distribution at the interface over the WO3@PFN heterojunction, which ultimately fosters the formation of interfacial dipoles oriented from conjugated macromolecular backbone of PFN to the surface of WO3 matrices. The interfacial dipoles with excellent charge transfer kinetics spontaneously activate the unidirectional and accelerated S-scheme charge motion from the WO3 framework to the conjugated chain of PFN due to the suitable band offsets at the interface, thus endowing WO3@PFN heterostructures with a significantly enhanced net efficiency of photoactivity. These findings would provide some insights into the design of advanced heterojunction photocatalysts for solar energy conversion as well as the study of the working mechanism of polyelectrolyte interlayers in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis NS. Science, 2007, 315: 798–801

    Article  CAS  PubMed  Google Scholar 

  2. Hisatomi T, Kubota J, Domen K. Chem Soc Rev, 2014, 43: 7520–7535

    Article  CAS  PubMed  Google Scholar 

  3. Wang Z, Li C, Domen K. Chem Soc Rev, 2019, 48: 2109–2125

    Article  CAS  PubMed  Google Scholar 

  4. Wu X, Luo N, Xie S, Zhang H, Zhang Q, Wang F, Wang Y. Chem Soc Rev, 2020, 49: 6198–6223

    Article  CAS  PubMed  Google Scholar 

  5. Takata T, Jiang J, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Seki K, Hisatomi T, Domen K. Nature, 2020, 581: 411–414

    Article  CAS  PubMed  Google Scholar 

  6. Albero J, Peng Y, Garcia H. ACS Catal, 2020, 10: 5734–5749

    Article  CAS  Google Scholar 

  7. Chen F, Ma T, Zhang T, Zhang Y, Huang H. Adv Mater, 2021, 33: 2005256

    Article  CAS  Google Scholar 

  8. Nayak S, Swain G, Parida K. ACS Appl Mater Interfaces, 2019, 11: 20923–20942

    Article  CAS  PubMed  Google Scholar 

  9. Chen S, Qi Y, Hisatomi T, Ding Q, Asai T, Li Z, Ma SSK, Zhang F, Domen K, Li C. Angew Chem Int Ed, 2015, 54: 8498–8501

    Article  CAS  Google Scholar 

  10. Zhang X, Meng Z, Rao D, Wang Y, Shi Q, Liu Y, Wu H, Deng K, Liu H, Lu R. Energy Environ Sci, 2016, 9: 841–849

    Article  CAS  Google Scholar 

  11. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Adv Mater, 2017, 29: 1601694

    Article  Google Scholar 

  12. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Chem Soc Rev, 2014, 43: 5234–5244

    Article  CAS  PubMed  Google Scholar 

  13. Xu Q, Zhang L, Cheng B, Fan J, Yu J. Chem, 2020, 6: 1543–1559

    Article  CAS  Google Scholar 

  14. Bao Y, Song S, Yao G, Jiang S. Sol RRL, 2021, 5: 2100118

    Article  CAS  Google Scholar 

  15. Zhang L, Zhang J, Yu H, Yu J. Adv Mater, 2022, 34: 2107668

    Article  CAS  Google Scholar 

  16. Wang L, Zhu B, Zhang J, Ghasemi JB, Mousavi M, Yu J. Matter, 2022, 5: 4187–4211

    Article  CAS  Google Scholar 

  17. Fu J, Xu Q, Low J, Jiang C, Yu J. Appl Catal B-Environ, 2019, 243: 556–565

    Article  CAS  Google Scholar 

  18. Cao S, Yu J, Wageh S, Al-Ghamdi AA, Mousavi M, Ghasemi JB, Xu F. J Mater Chem A, 2022, 10: 17174–17184

    Article  CAS  Google Scholar 

  19. Ruan X, Huang C, Cheng H, Zhang Z, Cui Y, Li Z, Xie T, Ba K, Zhang H, Zhang L, Zhao X, Leng J, Jin S, Zhang W, Zheng W, Ravi SK, Jiang Z, Cui X, Yu J. Adv Mater, 2023, 35: 2209141

    Article  CAS  Google Scholar 

  20. Li X, Kang B, Dong F, Zhang Z, Luo X, Han L, Huang J, Feng Z, Chen Z, Xu J, Peng B, Wang ZL. Nano Energy, 2021, 81: 105671

    Article  CAS  Google Scholar 

  21. Wang L, Cheng B, Zhang L, Yu J. Small, 2021, 17: 2103447

    Article  CAS  Google Scholar 

  22. Chen C, Hu J, Yang X, Yang T, Qu J, Guo C, Li CM. ACS Aprpl Mater Interfaces, 2021, 13: 20162–20173

    Article  CAS  Google Scholar 

  23. Cheng C, Zhang J, Zhu B, Liang G, Zhang L, Yu J. Angew Chem Int Ed, 2023, 62: e202218688

    Article  CAS  Google Scholar 

  24. He B, Wang Z, Xiao P, Chen T, Yu J, Zhang L. Adv Mater, 2022, 34: 2203225

    Article  CAS  Google Scholar 

  25. Nguyen VH, Singh P, Sudhaik A, Raizada P, Le QV, Helmy ET. Mater Lett, 2022, 313: 131781

    Article  CAS  Google Scholar 

  26. Wu Y, Zhang X, Xing Y, Hu Z, Tang H, Luo W, Huang F, Cao Y. ACS Mater Lett, 2019, 1: 620–627

    Article  CAS  Google Scholar 

  27. Hu Z, Zhang X, Yin Q, Liu X, Jiang X, Chen Z, Yang X, Huang F, Cao Y. Nano Energy, 2019, 60: 775–783

    Article  CAS  Google Scholar 

  28. He Z, Wu H, Cao Y. Adv Mater, 2014, 26: 1006–1024

    Article  CAS  PubMed  Google Scholar 

  29. Tan Y, Chen L, Wu F, Huang B, Liao Z, Yu Z, Hu L, Zhou Y, Chen Y. Macromolecules, 2018, 51: 8197–8204

    Article  CAS  Google Scholar 

  30. Huang F, Wu H, Cao Y. Chem Soc Rev, 2010, 39: 2500–2521

    Article  CAS  PubMed  Google Scholar 

  31. Bae S, Kim D, Kim H, Gu M, Ryu J, Kim BS. Adv Funct Mater, 2020, 30: 1908492

    Article  CAS  Google Scholar 

  32. Yeo JS, Kang M, Jung YS, Kang R, Lee SH, Heo YJ, Jin SH, Kim DY, Na SI. Nano Energy, 2016, 21: 26–38

    Article  CAS  Google Scholar 

  33. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat Photon, 2012, 6: 591–595

    Article  Google Scholar 

  34. He Z, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y. Adv Mater, 2011, 23: 4636–4643

    Article  CAS  PubMed  Google Scholar 

  35. Feng C, Wang X, Chen G, Zhang B, He Z, Cao Y. Langmuir, 2021, 37: 4347–4354

    Article  CAS  PubMed  Google Scholar 

  36. Weng B, Wu J, Zhang N, Xu YJ. Langmuir, 2014, 30: 5574–5584

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Chen Z, Zhai G, Men Y. Appl Surf Sci, 2018, 462: 760–771

    Article  CAS  Google Scholar 

  38. Cao J, Luo B, Lin H, Xu B, Chen S. Appl CatalB-Environ, 2012, 111–112: 288–296

    Article  Google Scholar 

  39. Hsieh HC, Chen JY, Lee WY, Bera D, Chen WC. Macromol Rapid Commun, 2018, 39: 1700616

    Article  Google Scholar 

  40. Carulli F, Mróz W, Lassi E, Sandionigi C, Squeo B, Meazza L, Scavia G, Luzzati S, Pasini M, Giovanella U, Galeotti F. Chem Pap, 2018, 72: 1753–1759

    Article  CAS  Google Scholar 

  41. Lin X, Xu S, Wei ZQ, Hou S, Mo QL, Fu XY, Xiao FX. J Mater Chem A, 2020, 8: 20151–20161

    Article  CAS  Google Scholar 

  42. Zhang Y, Fan X, Jian J, Yu D, Zhang Z, Dai L. Energy Environ Sci, 2017, 10: 2312–2317

    Article  CAS  Google Scholar 

  43. Pan B, Xie Y, Zhang S, Lv L, Zhang W. ACS Appl Mater Interfaces, 2012, 4: 3938–3943

    Article  CAS  PubMed  Google Scholar 

  44. Maturová K, Kemerink M, Wienk MM, Charrier DSH, Janssen RAJ. Adv Funct Mater, 2009, 19: 1379–1386

    Article  Google Scholar 

  45. Han T, Cao X, Sun K, Peng Q, Ye C, Huang A, Cheong WC, Chen Z, Lin R, Zhao D, Tan X, Zhuang Z, Chen C, Wang D, Li Y. Nat Commun, 2021, 12: 4952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanata-Kito T, Matsunaga M, Takakura H, Hamakawa Y, Nishino T. Proc. SPIE, 1990, 1286: 56–65

    Article  Google Scholar 

  47. Le Formal F, Sivula K, Grätzel M. J Phys Chem C, 2012, 116: 26707–26720

    Article  CAS  Google Scholar 

  48. Feng C, Wang X, He Z, Cao Y. Sol RRL, 2021, 5: 2000753

    Article  CAS  Google Scholar 

  49. Zhu M, Kim S, Mao L, Fujitsuka M, Zhang J, Wang X, Majima T. J Am Chem Soc, 2017, 139: 13234–13242

    Article  CAS  PubMed  Google Scholar 

  50. Song XN, Wang CY, Wang WK, Zhang X, Hou NN, Yu HQ. Adv Mater Interfaces, 2016, 3: 1500417

    Article  Google Scholar 

  51. Han HS, Park W, Hwang SW, Kim H, Sim Y, Surendran S, Sim U, Cho IS. J Catal, 2020, 389: 328–336

    Article  CAS  Google Scholar 

  52. Huang H, Tu S, Zeng C, Zhang T, Reshak AH, Zhang Y. Angew Chem Int Ed, 2017, 56: 11860–11864

    Article  CAS  Google Scholar 

  53. Rao PM, Cai L, Liu C, Cho IS, Lee CH, Weisse JM, Yang P, Zheng X. Nano Lett, 2014, 14: 1099–1105

    Article  CAS  PubMed  Google Scholar 

  54. Baek JH, Kim BJ, Han GS, Hwang SW, Kim DR, Cho IS, Jung HS. ACS Appl Mater Interfaces, 2017, 9: 1479–1487

    Article  CAS  PubMed  Google Scholar 

  55. Bae S, De Guzman RAF, Jeon D, Kim M, Ryu J. Adv Mater Inter, 2023, 10: 2202101

    Article  CAS  Google Scholar 

  56. Bae S, Kim H, Jeon D, Ryu J. ACS Appl Mater Interfaces, 2019, 11: 7990–7999

    Article  CAS  PubMed  Google Scholar 

  57. Zhu XY, Yang Q, Muntwiler M. Acc Chem Res, 2009, 42: 1779–1787

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the Guangdong International Science and Technology Cooperation Foundation (2020A0505100002), the 111 Project (BP0618009), the China Scholarship Council, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials (2019B121205002), the RGC Senior Research Fellowship Scheme (SRFS2021-5S01), the Hong Kong Research Grants Council (PolyU 15307321), Research Institute for Smart Energy (CDAQ) and Miss Clarea Au for the Endowed Professorship in Energy (847S). The authors would like to thank Miss Hanbo Yang from Imperial College London for wealthy discussion and helpful advice for the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhicai He or Wai-Yeung Wong.

Additional information

Supporting information

The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Feng, C., Xiong, B. et al. Steering S-scheme charge transfer via interfacial dipoles induced by amine-containing polyelectrolytes. Sci. China Chem. 66, 2098–2108 (2023). https://doi.org/10.1007/s11426-023-1652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1652-7

Navigation