Skip to main content
Log in

Selenium vacancies regulate d-band centers in Ni3Se4 toward paired electrolysis in anion-exchange membrane electrolyzers for upgrading N-containing compounds

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Paired electrolysis in anion-exchange membrane (AEM) electrolyzers toward the cathodic nitrate reduction reaction (NO3RR) and anodic benzylamine oxidation reaction (BOR) could generate high value-added N-containing compounds simultaneously. The key challenge is to develop bifunctional electrocatalysts with a wide potential window, which can achieve highly efficient conversion of anode and cathode reactants. Herein, Ni3Se4 with Se vacancies was prepared and employed as the cathode and anode of AEM electrolyzers for NO3RR and BOR. 15N isotope-labeling online differential electrochemical mass spectrometry (DEMS) proved that ammonium was reduced from nitrates and revealed the reaction pathway of NO3RR. The density functional theory calculation clarified that Se vacancies regulate d-band centers, and then further modulate the adsorption energy of adsorbed hydrogen, NO 3 and intermediates on the Ni3Se4-60s surface in NO3RR, so as to optimize the hydrogenation of NO 3 into ammonia. Moreover, during the BOR, the Se vacancy can promote the adsorption of OH, which is easier to form the active species of NiOOH. The technical and economic evaluation exhibited that the cost of paired electrolysis is 1.21 times lower and the profit is 1.42 times higher than that of the unpaired electrolysis, which shows the economic attraction of paired electrolysis. This work delivers the guidance for the design of efficient catalysts for paired electrolysis in AEM electrolyzer toward the sustainable synthesis of value-added chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu Y, Ren K, Ren T, Wang M, Wang Z, Li X, Wang L, Wang H. Appl Catal B-Environ, 2022, 306: 121094

    Article  CAS  Google Scholar 

  2. Wang Y, Li H, Zhou W, Zhang X, Zhang B, Yu Y. Angew Chem Int Ed, 2022, 61: e202202604

    CAS  Google Scholar 

  3. Du H, Guo H, Wang K, Du X, Beshiwork BA, Sun S, Luo Y, Liu Q, Li T, Sun X. Angew Chem Int Ed, 2023, 62: e202215782

    CAS  Google Scholar 

  4. Lv L, Shen Y, Liu J, Meng X, Gao X, Zhou M, Zhang Y, Gong D, Zheng Y, Zhou Z. J Phys Chem Lett, 2021, 12: 11143–11150

    Article  CAS  PubMed  Google Scholar 

  5. Zhang R, Guo Y, Zhang S, Chen D, Zhao Y, Huang Z, Ma L, Li P, Yang Q, Liang G, Zhi C. Adv Energy Mater, 2022, 12: 2103872

    Article  CAS  Google Scholar 

  6. Yao Q, Chen J, Xiao S, Zhang Y, Zhou X. ACS Appl Mater Interfaces, 2021, 13: 30458–30467

    Article  CAS  PubMed  Google Scholar 

  7. Yu Y, Wang C, Yu Y, Wang Y, Zhang B. Sci China Chem, 2020, 63: 1469–1476

    Article  CAS  Google Scholar 

  8. Yao J, Yan J. Sci China Chem, 2020, 63: 1737–1739

    Article  CAS  Google Scholar 

  9. Fang L, Wang S, Song C, Yang X, Li Y, Liu H. J Hazard Mater, 2022, 421: 126628

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Cai C, Wang Y, Yang X, Wu D, Zhu Y, Li M, Gu M, Shao M. ACS Catal, 2021, 11: 15135–15140

    Article  CAS  Google Scholar 

  11. Sun Y, Cai X, Hu W, Liu X, Zhu Y. Sci China Chem, 2020, 64: 1065–1075

    Article  Google Scholar 

  12. Kanan MW, Nocera DG. Science, 2008, 321: 1072–1075

    Article  CAS  PubMed  Google Scholar 

  13. Martin A, Kalevaru VN. ChemCatChem, 2010, 2: 1504–1522

    Article  CAS  Google Scholar 

  14. Jagadeesh RV, Junge H, Beller M. Nat Commun, 2014, 5: 1–8

    Article  Google Scholar 

  15. Schwob T, Kempe R. Angew Chem Int Ed, 2016, 55: 15175–15179

    Article  CAS  Google Scholar 

  16. Liu H, Li W. Curr Opin Electrochem, 2021, 30: 100795

    Article  CAS  Google Scholar 

  17. Liu H, Lee TH, Chen Y, Cochran EW, Li W. Green Chem, 2021, 23: 5056–5063

    Article  CAS  Google Scholar 

  18. Qiao W, Waseem I, Shang G, Wang D, Li Y, Besenbacher F, Niemantsverdriet H, Yan C, Su R. ACS Catal, 2021, 11: 13510–13518

    Article  CAS  Google Scholar 

  19. Yang G, Jiao Y, Yan H, Xie Y, Tian C, Wu A, Wang Y, Fu H. Nat Commun, 2022, 13: 3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Huang W, Guo S, Xin X, Zhang Y, Guo P, Tang S, Li X. Adv Energy Mater, 2021, 11: 2102452

    Article  CAS  Google Scholar 

  21. Li S, Li E, An X, Hao X, Jiang Z, Guan G. Nanoscale, 2021, 13: 12788–12817

    Article  CAS  PubMed  Google Scholar 

  22. Du N, Roy C, Peach R, Turnbull M, Thiele S, Bock C. Chem Rev, 2022, 122: 11830–11895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou Z, Kong Y, Tan H, Huang Q, Wang C, Pei Z, Wang H, Liu Y, Wang Y, Li S, Liao X, Yan W, Zhao S. Adv Mater, 2022, 34: 2106541

    Article  CAS  Google Scholar 

  24. Han WK, Wei JX, Xiao K, Ouyang T, Peng X, Zhao S, Liu ZQ. Angew Chem Int Ed, 2022, 61: e202206050

    CAS  Google Scholar 

  25. Fei H, Guo T, Xin Y, Wang L, Liu R, Wang D, Liu F, Wu Z. Appl Catal B-Environ, 2022, 300: 120733

    Article  CAS  Google Scholar 

  26. Shen P, Wang G, Chen K, Kang J, Ma D, Chu K. J Colloid Interface Sci, 2023, 629: 563–570

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L, Lu C, Ye F, Pang R, Liu Y, Wu Z, Shao Z, Sun Z, Hu L. Adv Mater, 2021, 33: 2007523

    Article  CAS  Google Scholar 

  28. Liu Z, Li B, Feng Y, Jia D, Li C, Sun Q, Zhou Y. Small, 2021, 17: 2102496

    Article  CAS  Google Scholar 

  29. Chang Y, Zhai P, Hou J, Zhao J, Gao J. Adv Energy Mater, 2022, 12: 2102359

    Article  CAS  Google Scholar 

  30. Sun Y, Zhang X, Mao B, Cao M. Chem Commun, 2016, 52: 14266–14269

    Article  CAS  Google Scholar 

  31. Zhong W, Wang Z, Gao N, Huang L, Lin Z, Liu Y, Meng F, Deng J, Jin S, Zhang Q, Gu L. Angew Chem Int Ed, 2020, 59: 22743–22748

    Article  CAS  Google Scholar 

  32. Jia R, Wang Y, Wang C, Ling Y, Yu Y, Zhang B. ACS Catal, 2020, 10: 3533–3540

    Article  CAS  Google Scholar 

  33. Huang Y, Long J, Wang Y, Meng N, Yu Y, Lu S, Xiao J, Zhang B. ACS Appl Mater Interfaces, 2021, 13: 54967–54973

    Article  CAS  PubMed  Google Scholar 

  34. Zong W, Yang C, Mo L, Ouyang Y, Guo H, Ge L, Miao YE, Rao D, Zhang J, Lai F, Liu T. Nano Energy, 2020, 77: 105189

    Article  CAS  Google Scholar 

  35. Jia D, Han L, Li Y, He W, Liu C, Zhang J, Chen C, Liu H, Xin HL. J Mater Chem A, 2020, 8: 18207–18214

    Article  CAS  Google Scholar 

  36. Ling Y, Wu Y, Wang C, Liu C, Lu S, Zhang B. ACS Catal, 2021, 11: 9471–9478

    Article  CAS  Google Scholar 

  37. Zeng L, Chen W, Zhang Q, Xu S, Zhang W, Lv F, Huang Q, Wang S, Yin K, Li M, Yang Y, Gu L, Guo S. ACS Catal, 2022, 12: 11391–11401

    Article  CAS  Google Scholar 

  38. Hou X, Shi T, Wei C, Zeng H, Hu X, Yan B. Biomaterials, 2020, 243: 119937

    Article  CAS  PubMed  Google Scholar 

  39. Xu J, Shao G, Tang X, Lv F, Xiang H, Jing C, Liu S, Dai S, Li Y, Luo J, Zhou Z. Nat Commun, 2022, 13: 2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu J, Zhang L, Wu H. Adv Funct Mater, 2022, 32: 2200544

    Article  CAS  Google Scholar 

  41. Wang Y, Huang H, Wu J, Yang H, Kang Z, Liu Y, Wang Z, Menezes PW, Chen Z. Adv Sci, 2023, 10: 2205347

    Article  CAS  Google Scholar 

  42. Shen P, Li X, Luo Y, Guo Y, Zhao X, Chu K. ACS Nano, 2022, 16: 7915–7925

    Article  CAS  PubMed  Google Scholar 

  43. Wan X, Guo W, Dong X, Wu H, Sun X, Chu M, Han S, Zhai J, Xia W, Jia S, He M, Han B. Green Chem, 2022, 24: 1090–1095

    Article  CAS  Google Scholar 

  44. Zhang Q, Liang SX, Jia Z, Zhang W, Wang W, Zhang LC. J Mater Sci Tech, 2021, 61: 159–168

    Article  Google Scholar 

  45. Liu Q, Xie L, Liang J, Ren Y, Wang Y, Zhang L, Yue L, Li T, Luo Y, Li N, Tang B, Liu Y, Gao S, Alshehri AA, Shakir I, Agboola PO, Kong Q, Wang Q, Ma D, Sun X. Small, 2022, 18: 2106961

    Article  CAS  Google Scholar 

  46. Lei F, Xu W, Yu J, Li K, Xie J, Hao P, Cui G, Tang B. Chem Eng J, 2021, 426: 131317

    Article  CAS  Google Scholar 

  47. Wang L, Li Z, Wang K, Dai Q, Lei C, Yang B, Zhang Q, Lei L, Leung MKH, Hou Y. Nano Energy, 2020, 74: 104850

    Article  CAS  Google Scholar 

  48. Liu W, Geng P, Li S, Liu W, Fan D, Lu H, Lu Z, Liu Y. J Energy Chem, 2021, 55: 17–24

    Article  CAS  Google Scholar 

  49. Kim D, Resasco J, Yu Y, Asiri AM, Yang P. Nat Commun, 2014, 5: 4948

    Article  CAS  PubMed  Google Scholar 

  50. Wang Z, Huang J, Wang L, Liu Y, Liu W, Zhao S, Liu ZQ. Angew Chem Int Ed, 2022, 61: e202114696

    CAS  Google Scholar 

  51. Wan K, Luo J, Zhou C, Zhang T, Arbiol J, Lu X, Mao B-, Zhang X, Fransaer J. Adv Funct Mater, 2019, 29: 1900315

    Article  Google Scholar 

  52. Huang Y, Chong X, Liu C, Liang Y, Zhang B. Angew Chem Int Ed, 2018, 57: 13163–13166

    Article  CAS  Google Scholar 

  53. Zhang N, Zou Y, Tao L, Chen W, Zhou L, Liu Z, Zhou B, Huang G, Lin H, Wang S. Angew Chem Int Ed, 2019, 58: 15895–15903

    Article  CAS  Google Scholar 

  54. Zhao S, Yang Y, Tang Z. Angew Chem Int Ed, 2022, 61: e202110186

    Article  CAS  Google Scholar 

  55. Verma S, Lu S, Kenis PJA. Nat Energy, 2019, 4: 466–474

    Article  CAS  Google Scholar 

  56. Pérez-Gallent E, Turk S, Latsuzbaia R, Bhardwaj R, Anastasopol A, Sastre-Calabuig F, Garcia AC, Giling E, Goetheer E. Ind Eng Chem Res, 2019, 58: 6195–6202

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22162025, 22168040), Regional Innovation Capability Leading Program of Shaanxi (2022QFY07-03, 2022QFY07-06) and Shaanxi Province Training Program of Innovation and Entrepreneurship for Undergraduates (S202210719108, S202110719107, S202010719121).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danjun Wang, Feng Fu or Chunming Yang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Electronic Supplementary Material

11426_2023_1636_MOESM1_ESM.pdf

Selenium vacancies regulate d-band centers in Ni3Se4 toward paired electrolysis in anion-exchange membrane electrolyzers for upgrading N-containing compounds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, F., Wang, C., Duan, W. et al. Selenium vacancies regulate d-band centers in Ni3Se4 toward paired electrolysis in anion-exchange membrane electrolyzers for upgrading N-containing compounds. Sci. China Chem. 66, 2109–2120 (2023). https://doi.org/10.1007/s11426-023-1636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1636-7

Navigation