Skip to main content
Log in

Chiroluminophores based on non-conjugated benzenes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Point-chiral groups as pendants conjugated to the aromatic luminophore generate weak chiroptical signals without self-assembly, showing the dependence on the flexibility of tethers, which hinders the development of point-chiral molecular materials with chiroptical properties such as the circularly polarized luminescence (CPL). Herein we introduce the molecular chiroptical materials based on the point chirality on a single benzene luminophore scaffold. Substitutes were stepwise conjugated to single benzene luminophores to boost the steric hindrance and tension, whereby the chirality transfer efficiency from point-chiral substituents to luminophores was enhanced. Multiple intramolecular CH−π interactions anchor the whole asymmetric geometry with ultra-high rotation energy barriers and excellent thermostability. Dissymmetry g-factors of circular dichroism and CPL spectra up to 10−3 order of magnitude were realized in solutions, which are comparable to the inherent-chiral luminophores such as helicene and binaphthyl derivatives. The acridine-appended single benzene system shows the emergence of thermally activated delayed fluorescence (TADF), which extends the potentials of the single benzene chiral system in the TADF-based chiroptical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le KV, Takezoe H, Araoka F. Adv Mater, 2017, 29: 1602737

    Article  Google Scholar 

  2. Mori T. Chem Rev, 2021, 121: 2373–2412

    Article  CAS  PubMed  Google Scholar 

  3. Dolamic I, Knoppe S, Dass A, Bürgi T. Nat Commun, 2012, 3: 798

    Article  PubMed  Google Scholar 

  4. Ma L, Falkowski JM, Abney C, Lin W. Nat Chem, 2010, 2: 838–846

    Article  CAS  PubMed  Google Scholar 

  5. Shang X, Park CH, Jung GY, Kwak SK, Oh JH. ACS Appl Mater Interfaces, 2018, 10: 36194–36201

    Article  CAS  PubMed  Google Scholar 

  6. Zhang G, Bao Y, Pan M, Wang N, Cheng X, Zhang W. Sci China Chem, 2023, 66: 1169–1178

    Article  CAS  Google Scholar 

  7. Buendıa J, Greciano EE, Sánchez L. J Org Chem, 2015, 80: 12444–12452

    Article  PubMed  Google Scholar 

  8. Takaishi K, Matsumoto T, Kawataka M, Ema T. Angew Chem Int Ed, 2021, 60: 9968–9972

    Article  CAS  Google Scholar 

  9. Ramaiah D, Neelakandan PP, Nair AK, Avirah RR. Chem Soc Rev, 2010, 39: 4158–4168

    Article  CAS  PubMed  Google Scholar 

  10. Nakakuki Y, Hirose T, Sotome H, Miyasaka H, Matsuda K. J Am Chem Soc, 2018, 140: 4317–4326

    Article  CAS  PubMed  Google Scholar 

  11. Shen Y, Chen CF. Chem Rev, 2012, 112: 1463–1535

    Article  CAS  PubMed  Google Scholar 

  12. Keshri SK, Takai A, Ishizuka T, Kojima T, Takeuchi M. Angew Chem Int Ed, 2020, 59: 5254–5258

    Article  CAS  Google Scholar 

  13. Tanaka H, Inoue Y, Mori T. ChemPhotoChem, 2018, 2: 386–402

    Article  CAS  Google Scholar 

  14. Sang Y, Han J, Zhao T, Duan P, Liu M. Adv Mater, 2019, 32: 1900110

    Article  Google Scholar 

  15. Greenfield JL, Wade J, Brandt JR, Shi X, Penfold TJ, Fuchter MJ. Chem Sci, 2021, 12: 8589–8602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shang X, Song I, Ohtsu H, Lee YH, Zhao T, Kojima T, Jung JH, Kawano M, Oh JH. Adv Mater, 2017, 29: 1605828

    Article  Google Scholar 

  17. Wang Z, Hao A, Xing P. Chin Chem Lett, 2021, 32: 1390–1396

    Article  CAS  Google Scholar 

  18. Shang X, Song I, Lee JH, Han M, Kim JC, Ohtsu H, Ahn J, Kwak SK, Oh JH. J Mater Chem C, 2019, 7: 8688–8697

    Article  CAS  Google Scholar 

  19. Sánchez-Carnerero EM, Agarrabeitia AR, Moreno F, Maroto BL, Muller G, Ortiz MJ, de la Moya S. Chem Eur J, 2015, 21: 13488–13500

    Article  PubMed  Google Scholar 

  20. Kim J, Oh JH, Kim D. Org Biomol Chem, 2021, 19: 933–946

    Article  CAS  PubMed  Google Scholar 

  21. Huang R, Liu B, Wang C, Wang Y, Zhang H. J Phys Chem C, 2018, 122: 10510–10518

    Article  CAS  Google Scholar 

  22. Belmonte-Vázquez JL, Amador-Sánchez YA, Rodríguez-Cortés LA, Rodríguez-Molina B. Chem Mater, 2021, 33: 7160–7184

    Article  Google Scholar 

  23. Xiang Z, Wang ZY, Ren TB, Xu W, Liu YP, Zhang XX, Wu P, Yuan L, Zhang XB. Chem Commun, 2019, 55: 11462–11465

    Article  CAS  Google Scholar 

  24. Liu H, Yan S, Huang R, Gao Z, Wang G, Ding L, Fang Y. Chem Eur J, 2019, 25: 16732–16739

    Article  CAS  PubMed  Google Scholar 

  25. Liu B, Di Q, Liu W, Wang C, Wang Y, Zhang H. J Phys Chem Lett, 2019, 10: 1437–1442

    Article  CAS  PubMed  Google Scholar 

  26. Liu M, Zhang L, Wang T. Chem Rev, 2015, 115: 7304–7397

    Article  CAS  PubMed  Google Scholar 

  27. Xu C, Yin C, Wu W, Ma X. Sci China Chem, 2022, 65: 75–81

    Article  CAS  Google Scholar 

  28. Zhou F, Huang Z, Huang Z, Cheng R, Yang Y, You J. Org Lett, 2021, 23: 4559–4563

    Article  CAS  PubMed  Google Scholar 

  29. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234–238

    Article  CAS  PubMed  Google Scholar 

  30. Zhang L, Wang YF, Li M, Gao QY, Chen CF. Chin Chem Lett, 2021, 32: 740–744

    Article  CAS  Google Scholar 

  31. Ni F, Li N, Zhan L, Yang C. Adv Opt Mater, 2020, 8: 1902187

    Article  CAS  Google Scholar 

  32. Chen J, Liu H, Guo J, Wang J, Qiu N, Xiao S, Chi J, Yang D, Ma D, Zhao Z, Tang BZ. Angew Chem Int Ed, 2022, 61: e202116810

    CAS  Google Scholar 

  33. Pescitelli G. Chirality, 2022, 34: 333–363

    Article  CAS  PubMed  Google Scholar 

  34. Han SY, Mow RK, Bartholomew AK, Ng F, Steigerwald ML, Roy X, Nuckolls C, Wiscons RA. J Am Chem Soc, 2022, 144: 5263–5267

    Article  CAS  PubMed  Google Scholar 

  35. Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Sci China Chem, 2021, 64: 2060–2104

    Article  CAS  Google Scholar 

  36. Wang X, Zhang F, Schellhammer KS, Machata P, Ortmann F, Cuniberti G, Fu Y, Hunger J, Tang R, Popov AA, Berger R, Müllen K, Feng X. J Am Chem Soc, 2016, 138: 11606–11615

    Article  CAS  PubMed  Google Scholar 

  37. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  38. Cheng Q, Hao A, Xing P. Mater Chem Front, 2021, 5: 6628–6638

    Article  CAS  Google Scholar 

  39. Pritchard B, Autschbach J. ChemPhysChem, 2010, 11: 2409–2415

    Article  CAS  PubMed  Google Scholar 

  40. Malinčík J, Gaikwad S, Mora-Fuentes JP, Boillat MA, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Angew Chem Int Ed, 2022, 61: e202208591

    Article  Google Scholar 

  41. Arrico L, Di Bari L, Zinna F. Chem Eur J, 2021, 27: 2920–2934

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Ma Z, Wang Z, Jiang W. J Am Chem Soc, 2022, 144: 11397–11404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is also supported by the National Natural Science Foundation of China (21901145, 22171165). We also acknowledge the financial support from Youth cross-scientific innovation group of Shandong University (2020QNQT003) and the project of construction and management research of laboratory of Shandong University (sy20202202). We thank Prof. Di Sun at Shandong University for assistance with the data collection of X-ray crystal structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyao Xing.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supportion Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hao, A. & Xing, P. Chiroluminophores based on non-conjugated benzenes. Sci. China Chem. 66, 2130–2140 (2023). https://doi.org/10.1007/s11426-023-1630-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1630-5

Keywords

Navigation