Skip to main content
Log in

P-doped all-small-molecule organic solar cells with power conversion efficiency of 17.73%

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

All-small organic solar cells (ASM OSCs) inherit the advantages of the distinct merits of small molecules, such as well-defined structures and less batch-to-batch variation. In comparison with the rapid development of polymer-based OSCs, more efforts are needed to devote to improving the performance of ASM OSCs to close the performance gap between ASM and polymer-based OSCs. Herein, a well-known p-dopant named fluoro-7,7,8,8-tetracyano-p-quinodimethane (FTCNQ) was introduced to a high-efficiency system of HD-1:BTP-eC9, and a high power conversion efficiency (PCE) of 17.15% was achieved due to the improved electrical properties as well as better morphology of the active layer, supported by the observed higher fill factor (FF) of 79.45% and suppressed non-radiative recombination loss. Furthermore, combining with the further morphology optimization from solvent additive of 1-iodonaphthalene (IN) in the blend film, the HD-1:BTP-eC9-based device with the synergistic effects of both FTCNQ and IN demonstrates a remarkable PCE of 17.73% (certified as 17.49%), representing the best result of binary ASM OSCs to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng G, Chen W, Chen X, Hu Y, Chen Y, Zhang B, Chen H, Sun W, Shen Y, Li Y, Yan F, Li Y. J Am Chem Soc, 2022, 144: 8658–8668

    Article  CAS  PubMed  Google Scholar 

  2. Sun Y, Chang M, Meng L, Wan X, Gao H, Zhang Y, Zhao K, Sun Z, Li C, Liu S, Wang H, Liang J, Chen Y. Nat Electron, 2019, 2: 513–520

    Article  CAS  Google Scholar 

  3. Dauzon E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD. Adv Mater, 2021, 33: 2101469

    Article  CAS  Google Scholar 

  4. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 224–268

    Article  CAS  Google Scholar 

  5. Zhan L, Yin S, Li Y, Li S, Chen T, Sun R, Min J, Zhou G, Zhu H, Chen Y, Fang J, Ma CQ, Xia X, Lu X, Qiu H, Fu W, Chen H. Adv Mater, 2022, 34: 2206269

    Article  CAS  Google Scholar 

  6. Zhu L, Zhang M, Xu J, Li C, Yan J, Zhou G, Zhong W, Hao T, Song J, Xue X, Zhou Z, Zeng R, Zhu H, Chen CC, MacKenzie RCI, Zou Y, Nelson J, Zhang Y, Sun Y, Liu F. Nat Mater, 2022, 21: 656–663

    Article  CAS  PubMed  Google Scholar 

  7. Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv Mater, 2021, 33: 2102420

    Article  CAS  Google Scholar 

  8. Fu J, Fong PWK, Liu H, Huang CS, Lu X, Lu S, Abdelsamie M, Kodalle T, Sutter-Fella CM, Yang Y, Li G. Nat Commun, 2023, 14: 1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen T, Li S, Li Y, Chen Z, Wu H, Lin Y, Gao Y, Wang M, Ding G, Min J, Ma Z, Zhu H, Zuo L, Chen H. Adv Mater, 2023, 35: 2300400

    Article  CAS  Google Scholar 

  10. Wang J, Wang Y, Bi P, Chen Z, Qiao J, Li J, Wang W, Zheng Z, Zhang S, Hao X, Hou J. Adv Mater, 2023, 35: 2301583

    Article  CAS  Google Scholar 

  11. Kong X, Zhang J, Meng L, Sun C, Jiang X, Zhang J, Zhu C, Sun G, Li J, Li X, Wei Z, Li Y. CCS Chem, 2023, 1–11

  12. Gao W, Qi F, Peng Z, Lin FR, Jiang K, Zhong C, Kaminsky W, Guan Z, Lee CS, Marks TJ, Ade H, Jen AKY. Adv Mater, 2022, 34: 2202089

    Article  CAS  Google Scholar 

  13. Xu X, Jing W, Meng H, Guo Y, Yu L, Li R, Peng Q. Adv Mater, 2023, 35: 2208997

    Article  CAS  Google Scholar 

  14. Kan B, Kan Y, Zuo L, Shi X, Gao K. InfoMat, 2020, 3: 175–200

    Article  Google Scholar 

  15. Tang H, Yan C, Huang J, Kan Z, Xiao Z, Sun K, Li G, Lu S. Matter, 2020, 3: 1403–1432

    Article  Google Scholar 

  16. Walker B, Tamayo AB, Dang XD, Zalar P, Seo JH, Garcia A, Tantiwiwat M, Nguyen TQ. Adv Funct Mater, 2009, 19: 3063–3069

    Article  CAS  Google Scholar 

  17. Liu Y, Wan X, Yin B, Zhou J, Long G, Yin S, Chen Y. J Mater Chem, 2010, 20: 2464–2468

    Article  CAS  Google Scholar 

  18. Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, Chen Y. Adv Mater, 2011, 23: 5387–5391

    Article  CAS  PubMed  Google Scholar 

  19. Kan B, Zhang Q, Li M, Wan X, Ni W, Long G, Wang Y, Yang X, Feng H, Chen Y. J Am Chem Soc, 2014, 136: 15529–15532

    Article  CAS  PubMed  Google Scholar 

  20. Duan T, Chen Q, Yang Q, Hu D, Cai G, Lu X, Lv J, Song H, Zhong C, Liu F, Yu D, Lu S. J Mater Chem A, 2022, 10: 3009–3017

    Article  CAS  Google Scholar 

  21. Zhang L, Sun R, Zhang Z, Zhang J, Zhu Q, Ma W, Min J, Wei Z, Deng D. Adv Mater, 2022, 34: 2207020

    Article  CAS  Google Scholar 

  22. Sun Y, Nian L, Kan Y, Ren Y, Chen Z, Zhu L, Zhang M, Yin H, Xu H, Li J, Hao X, Liu F, Gao K, Li Y. Joule, 2022, 6: 2835–2848

    Article  CAS  Google Scholar 

  23. Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, Xia B, Wang Z, Lu K, Ma W, Wei Z. Nat Commun, 2016, 7: 13740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wan J, Xu X, Zhang G, Li Y, Feng K, Peng Q. Energy Environ Sci, 2017, 10: 1739–1745

    Article  CAS  Google Scholar 

  25. Guo J, Qiu B, Yang D, Zhu C, Zhou L, Su C, Jeng US, Xia X, Lu X, Meng L, Zhang Z, Li Y. Adv Funct Mater, 2022, 32: 2110159

    Article  CAS  Google Scholar 

  26. Qin J, Chen Z, Bi P, Yang Y, Zhang J, Huang Z, Wei Z, An C, Yao H, Hao X, Zhang T, Cui Y, Hong L, Liu C, Zu Y, He C, Hou J. Energy Environ Sci, 2021, 14: 5903–5910

    Article  CAS  Google Scholar 

  27. Li Z, Wang X, Zheng N, Saparbaev A, Zhang J, Xiao C, Lei S, Zheng X, Zhang M, Li Y, Xiao B, Yang R. Energy Environ Sci, 2022, 15: 4338–4348

    Article  CAS  Google Scholar 

  28. Ge J, Xie L, Peng R, Ge Z. Adv Mater, 2023, 34: 2206566

    Article  Google Scholar 

  29. Gao H, Sun Y, Meng L, Han C, Wan X, Chen Y. Small, 2023, 19: 2205594

    Article  CAS  Google Scholar 

  30. Wu S, Feng W, Meng L, Zhang Z, Si X, Chen Y, Wan X, Li C, Yao Z, Chen Y. Nano Energy, 2022, 103: 107801

    Article  CAS  Google Scholar 

  31. Ma K, Feng W, Liang H, Chen H, Wang Y, Wan X, Yao Z, Li C, Kan B, Chen Y. Adv Funct Mater, 2023, 33: 2214926

    Article  CAS  Google Scholar 

  32. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205

    Article  CAS  Google Scholar 

  33. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  PubMed  Google Scholar 

  34. Yan H, Ma W. Adv Funct Mater, 2021, 32: 2111351

    Article  Google Scholar 

  35. Yurash B, Cao DX, Brus VV, Leifert D, Wang M, Dixon A, Seifrid M, Mansour AE, Lungwitz D, Liu T, Santiago PJ, Graham KR, Koch N, Bazan GC, Nguyen TQ. Nat Mater, 2019, 18: 1327–1334

    Article  CAS  PubMed  Google Scholar 

  36. Xiong Y, Ye L, Gadisa A, Zhang Q, Rech JJ, You W, Ade H. Adv Funct Mater, 2019, 29: 1806262

    Article  Google Scholar 

  37. Xu X, Feng K, Yu L, Yan H, Li R, Peng Q. ACS Energy Lett, 2020, 5: 2434–2443

    Article  CAS  Google Scholar 

  38. Qi B, Wang J. Phys Chem Chem Phys, 2013, 15: 8972–8982

    Article  CAS  PubMed  Google Scholar 

  39. Mun J, Kang J, Zheng Y, Luo S, Wu Y, Gong H, Lai JC, Wu HC, Xue G, Tok JBH, Bao Z. Adv Electron Mater, 2020, 6: 2000251

    Article  CAS  Google Scholar 

  40. Ma T, Dong BX, Grocke GL, Strzalka J, Patel SN. Macromolecules, 2020, 53: 2882–2892

    Article  CAS  Google Scholar 

  41. Méndez H, Heimel G, Winkler S, Frisch J, Opitz A, Sauer K, Wegner B, Oehzelt M, Röthel C, Duhm S, Többens D, Koch N, Salzmann I. Nat Commun, 2015, 6: 8560

    Article  PubMed  Google Scholar 

  42. Cochran JE, Junk MJN, Glaudell AM, Miller PL, Cowart JS, Toney MF, Hawker CJ, Chmelka BF, Chabinyc ML. Macromolecules, 2014, 47: 6836–6846

    Article  CAS  Google Scholar 

  43. Chen H, Maxwell A, Li C, Teale S, Chen B, Zhu T, Ugur E, Harrison G, Grater L, Wang J, Wang Z, Zeng L, Park SM, Chen L, Serles P, Awni RA, Subedi B, Zheng X, Xiao C, Podraza NJ, Filleter T, Liu C, Yang Y, Luther JM, De Wolf S, Kanatzidis MG, Yan Y, Sargent EH. Nature, 2023, 613: 676–681

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Zhang X, Li Y, Huang G, Du W, Shi J, Wang B, Li S, Jiang T, Zhang J, Cheng Q, Chen J, Han B, Liu X, Zhang Y, Zhou H. Sol RRL, 2022, 6: 2101096

    Article  CAS  Google Scholar 

  45. Rau U, Blank B, Müller TC, Kirchartz T. Phys Rev Appl, 2017, 7: 044016

    Article  Google Scholar 

  46. Wang Y, Qian D, Cui Y, Zhang H, Hou J, Vandewal K, Kirchartz T, Gao F. Adv Energy Mater, 2018, 8: 1801352

    Article  Google Scholar 

  47. Kirchartz T, Taretto K, Rau U. J Phys Chem C, 2009, 113: 17958–17966

    Article  CAS  Google Scholar 

  48. Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089

    Article  CAS  Google Scholar 

  49. Ma X, Wang J, Gao J, Hu Z, Xu C, Zhang X, Zhang F. Adv Energy Mater, 2020, 10: 2001404

    Article  CAS  Google Scholar 

  50. Shang Z, Heumueller T, Prasanna R, Burkhard GF, Naab BD, Bao Z, McGehee MD, Salleo A. Adv Energy Mater, 2016, 6: 1601149

    Article  Google Scholar 

  51. Wöpke C, Göhler C, Saladina M, Du X, Nian L, Greve C, Zhu C, Yallum KM, Hofstetter YJ, Becker-Koch D, Li N, Heumüller T, Milekhin I, Zahn DRT, Brabec CJ, Banerji N, Vaynzof Y, Herzig EM, MacKenzie RCI, Deibel C. Nat Commun, 2022, 13: 3786

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang Y, Cai G, Li Y, Zhang Z, Li T, Zuo X, Lu X, Lin Y. Adv Mater, 2021, 33: 2008134

    Article  CAS  Google Scholar 

  53. Chen H, Zou Y, Liang H, He T, Xu X, Zhang Y, Ma Z, Wang J, Zhang M, Li Q, Li C, Long G, Wan X, Yao Z, Chen Y. Sci China Chem, 2022, 65: 1362–1373

    Article  CAS  Google Scholar 

  54. Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. ACS Nano, 2013, 7: 4569–4577

    Article  CAS  PubMed  Google Scholar 

  55. Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM. Appl Phys Lett, 2005, 86: 123509

    Article  Google Scholar 

  56. Liu S, Liang Q, Yan J, Wu H, Cao Y. Org Electron, 2018, 59: 427–431

    Article  CAS  Google Scholar 

  57. Raval P, Dhennin M, Vezin H, Pawlak T, Roussel P, Nguyen TQ, Manjunatha Reddy GN. Electrochim Acta, 2022, 424: 140602

    Article  CAS  Google Scholar 

  58. Meresa AA, Parida B, Long DX, Kim D, Kim T, Earmme T, Hong J, Kang D-, Kim FS. Intl J Energy Res, 2022, 46: 8716–8725

    Article  CAS  Google Scholar 

  59. Zhu L, Zhang M, Zhou G, Hao T, Xu J, Wang J, Qiu C, Prine N, Ali J, Feng W, Gu X, Ma Z, Tang Z, Zhu H, Ying L, Zhang Y, Liu F. Adv Energy Mater, 2020, 10: 1904234

    Article  CAS  Google Scholar 

  60. Jiang K, Zhang J, Zhong C, Lin FR, Qi F, Li Q, Peng Z, Kaminsky W, Jang SH, Yu J, Deng X, Hu H, Shen D, Gao F, Ade H, Xiao M, Zhang C, Jen AKY. Nat Energy, 2022, 7: 1076–1086

    Article  Google Scholar 

  61. Rao A, Chow PCY, Gélinas S, Schlenker CW, Li CZ, Yip HL, Jen AKY, Ginger DS, Friend RH. Nature, 2013, 500: 435–439

    Article  CAS  PubMed  Google Scholar 

  62. Chandrabose S, Chen K, Barker AJ, Sutton JJ, Prasad SKK, Zhu J, Zhou J, Gordon KC, Xie Z, Zhan X, Hodgkiss JM. J Am Chem Soc, 2019, 141: 6922–6929

    Article  CAS  PubMed  Google Scholar 

  63. Xu T, Lv J, Yang K, He Y, Yang Q, Chen H, Chen Q, Liao Z, Kan Z, Duan T, Sun K, Ouyang J, Lu S. Energy Environ Sci, 2021, 14: 5366–5376

    Article  CAS  Google Scholar 

  64. Deng M, Xu X, Duan Y, Yu L, Li R, Peng Q. Adv Mater, 2023, 35: 2210760

    Article  CAS  Google Scholar 

  65. Meng H, Jing W, Xu X, Yu L, Peng Q. Angew Chem Int Ed, 2023, 62: e202301958

    Article  CAS  Google Scholar 

  66. Han C, Wang J, Zhang S, Chen L, Bi F, Wang J, Yang C, Wang P, Li Y, Bao X. Adv Mater, 2023, 35: 2208986

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of the People’s Republic of China (MoST, 2022YFB4200400, 2019YFA0705900) and the National Natural Science Foundation of China (21935007, 52025033, 51873089), Tianjin city (20JCZDJC00740, 22JCQNJC00530), 111 Project (B12015), the Fundamental Research Funds for the Central Universities, Nankai University (023-ZB22000105, 020-ZB22000110, 020-92220002), and Haihe Laboratory of Sustainable Chemical Transformations. We thank Yuanyuan Jiang and Prof. Xiaozhang Zhu for the UPS measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Kan or Yongsheng Chen.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Ma, K., Song, G. et al. P-doped all-small-molecule organic solar cells with power conversion efficiency of 17.73%. Sci. China Chem. 66, 2371–2379 (2023). https://doi.org/10.1007/s11426-023-1616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1616-2

Navigation