Skip to main content
Log in

Metal complex catalysts broaden bioorthogonal reactions

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Bioorthogonal reactions involving transition metals have diversified applications in imaging, drug development, chemical catalysis and other fields. Transition metals used to catalyze the bioorthogonal reaction mainly include ruthenium, palladium, copper, and gold. However, the great potential for translational applications of bioorthogonal reaction needs to be further expanded and their reaction efficiency should be improved. Therefore, it is an urgent need for the development of this field to find more suitable catalysts to efficiently catalyze existing biological orthogonal reactions and expand the types of biological orthogonal reactions. Thus, this review not only summarizes those transition metal complexes-based catalysts participating in bioorthogonal reaction and some bioorthogonal reactions involving transition metals inside the cells, but also sheds light into the discovery of new transition metal complexes and their future development in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pena AC, Pamplona A. Coord Chem Rev, 2022, 453: 214285

    Article  CAS  Google Scholar 

  2. Xu Y, Zhou Z, Deng N, Fu K, Zhu C, Hong Q, Shen Y, Liu S, Zhang Y. Sci China Chem, 2023, 66: doi: https://doi.org/10.1007/s11426-022-1529-y

  3. Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, Akbarzadeh A. Artif Cells Nanomed Biotechnol, 2017, 45: 1069–1076

    Article  CAS  Google Scholar 

  4. Lou-Franco J, Das B, Elliott C, Cao C. Nano-Micro Lett, 2020, 13: 10

    Article  ADS  Google Scholar 

  5. Li Y, Liu J. Mater Horiz, 2021, 8: 336–350

    Article  PubMed  CAS  Google Scholar 

  6. Krebs C, Galonić Fujimori D, Walsh CT, Bollinger Jr. JM. Acc Chem Res, 2007, 40: 484–492

    Article  PubMed  CAS  Google Scholar 

  7. Vicens L, Olivo G, Costas M. ACS Catal, 2020, 10: 8611–8631

    Article  CAS  Google Scholar 

  8. Fliedel C, Ghisolfi A, Braunstein P. Chem Rev, 2016, 116: 9237–9304

    Article  PubMed  CAS  Google Scholar 

  9. Bertozzi CR. Acc Chem Res, 2011, 44: 651–653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Grammel M, Hang HC. Nat Chem Biol, 2014, 10: 239

    Article  CAS  Google Scholar 

  11. Xie X, Li B, Wang J, Zhan C, Huang Y, Zeng F, Wu S. ACS Mater Lett, 2019, 1: 549–557

    Article  CAS  Google Scholar 

  12. Völker T, Meggers E. ChemBioChem, 2017, 18: 1083–1086

    Article  PubMed  Google Scholar 

  13. Jang SY, Murale DP, Kim AD, Lee JS. ChemBioChem, 2019, 20: 1498–1507

    Article  PubMed  CAS  Google Scholar 

  14. Liao X, Su Y, Tang X. Sci China Chem, 2022, 65: 2096–2121

    Article  CAS  Google Scholar 

  15. Adam C, Pérez-López AM, Hamilton L, Rubio-Ruiz B, Bray TL, Sieger D, Brennan PM, Unciti-Broceta A. Chem Eur J, 2018, 24: 16783–16790

    Article  PubMed  CAS  Google Scholar 

  16. Li J, Yu J, Zhao J, Wang J, Zheng S, Lin S, Chen L, Yang M, Jia S, Zhang X, Chen PR. Nat Chem, 2014, 6: 352–361

    Article  PubMed  CAS  Google Scholar 

  17. Liu L, Dong J, Fu Z, Su L, Wu S, Shang Q, Yin SF, Zhou Y. Sci China Chem, 2022, 65: 2487–2493

    Article  ADS  CAS  Google Scholar 

  18. Bray TL, Salji M, Brombin A, Pérez-López AM, Rubio-Ruiz B, Galbraith LCA, Patton EE, Leung HY, Unciti-Broceta A. Chem Sci, 2018, 9: 7354–7361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Streu C, Meggers E. Angew Chem Int Ed, 2006, 45: 5645–5648

    Article  CAS  Google Scholar 

  20. Tsubokura K, Vong KKH, Pradipta AR, Ogura A, Urano S, Tahara T, Nozaki S, Onoe H, Nakao Y, Sibgatullina R, Kurbangalieva A, Watanabe Y, Tanaka K. Angew Chem Int Ed, 2017, 56: 3579–3584

    Article  CAS  Google Scholar 

  21. Gunanathan C, Milstein D. Chem Rev, 2014, 114: 12024–12087

    Article  PubMed  CAS  Google Scholar 

  22. Simonetti M, Cannas DM, Just-Baringo X, Vitorica-Yrezabal IJ, Larrosa I. Nat Chem, 2018, 10: 724–731

    Article  PubMed  CAS  Google Scholar 

  23. Jeschek M, Reuter R, Heinisch T, Trindler C, Klehr J, Panke S, Ward TR. Nature, 2016, 537: 661–665

    Article  PubMed  ADS  CAS  Google Scholar 

  24. Okamoto Y, Kojima R, Schwizer F, Bartolami E, Heinisch T, Matile S, Fussenegger M, Ward TR. Nat Commun, 2018, 9: 1943

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  25. Zhang X, Liu Y, Gopalakrishnan S, Castellanos-Garcia L, Li G, Malassiné M, Uddin I, Huang R, Luther DC, Vachet RW, Rotello VM. ACS Nano, 2020, 14: 4767–4773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Soldevila-Barreda JJ, Romero-Canelón I, Habtemariam A, Sadler PJ. Nat Commun, 2015, 6: 6582

    Article  PubMed  ADS  CAS  Google Scholar 

  27. Vidal C, Tomás-Gamasa M, Gutiérrez-González A, Mascareñas JL. J Am Chem Soc, 2019, 141: 5125–5129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hsu HT, Trantow BM, Waymouth RM, Wender PA. Bioconjugate Chem, 2016, 27: 376–382

    Article  CAS  Google Scholar 

  29. Sasmal PK, Carregal-Romero S, Parak WJ, Meggers E. Organometallics, 2012, 31: 5968–5970

    Article  CAS  Google Scholar 

  30. Tomás-Gamasa M, Martínez-Calvo M, Couceiro JR, Mascareñas JL. Nat Commun, 2016, 7: 12538

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  31. Miguel-Ávila J, Tomás-Gamasa M, Olmos A, Pérez PJ, Mascareñas JL. Chem Sci, 2018, 9: 1947–1952

    Article  PubMed  PubMed Central  Google Scholar 

  32. Busemann A, Araman C, Flaspohler I, Pratesi A, Zhou XQ, van Rixel VHS, Siegler MA, Messori L, van Kasteren SI, Bonnet S. Inorg Chem, 2020, 59: 7710–7720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Eda S, Nasibullin I, Vong K, Kudo N, Yoshida M, Kurbangalieva A, Tanaka K. Nat Catal, 2019, 2: 780–792

    Article  CAS  Google Scholar 

  34. Kiesewetter MK, Waymouth RM. Organometallics, 2010, 29: 6051–6056

    Article  CAS  Google Scholar 

  35. Liu J, Lai H, Xiong Z, Chen B, Chen T. Chem Commun, 2019, 55: 9904–9914

    Article  CAS  Google Scholar 

  36. Lai H, Zeng D, Liu C, Zhang Q, Wang X, Chen T. Biomaterials, 2019, 219: 119377

    Article  PubMed  CAS  Google Scholar 

  37. Völker T, Dempwolff F, Graumann PL, Meggers E. Angew Chem Int Ed, 2014, 53: 10536–10540

    Article  Google Scholar 

  38. Zhang L, Chen X, Xue P, Sun HHY, Williams ID, Sharpless KB, Fokin VV, Jia G. J Am Chem Soc, 2005, 127: 15998–15999

    Article  PubMed  CAS  Google Scholar 

  39. Destito P, Couceiro JR, Faustino H, López F, Mascareñas JL. Angew Chem, 2017, 129: 10906–10910

    Article  ADS  Google Scholar 

  40. Li SF, Chen Y, Wang YS, Mo HL, Zang SQ. Sci China Chem, 2022, 65: 1122–1128

    Article  CAS  Google Scholar 

  41. Tonga GY, Jeong Y, Duncan B, Mizuhara T, Mout R, Das R, Kim ST, Yeh YC, Yan B, Hou S, Rotello VM. Nat Chem, 2015, 7: 597–603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang J, Cheng B, Li J, Zhang Z, Hong W, Chen X, Chen PR. Angew Chem Int Ed, 2015, 54: 5364–5368

    Article  CAS  Google Scholar 

  43. Zhang JW, Jiang F, Chen YH, Xiang SH, Tan B. Sci China Chem, 2021, 64: 1515–1521

    Article  CAS  Google Scholar 

  44. Li JF, Luan YX, Ye M. Sci China Chem, 2021, 64: 1923–1937

    Article  CAS  Google Scholar 

  45. Salishcheva O, Prosekov A. Foods Raw Mater, 2020, 8: 298–311

    Article  CAS  Google Scholar 

  46. Jayasree S, Seayad A, Chaudhari RV. Org Lett, 2000, 2: 203–206

    Article  PubMed  CAS  Google Scholar 

  47. Sharma S, Sarkar BR. Synth Commun, 2018, 48: 906–914

    Article  CAS  Google Scholar 

  48. Li J, Lin S, Wang J, Jia S, Yang M, Hao Z, Zhang X, Chen PR. J Am Chem Soc, 2013, 135: 7330–7338

    Article  PubMed  CAS  Google Scholar 

  49. Lv T, Wu J, Kang F, Wang T, Wan B, Lu JJ, Zhang Y, Huang Z. Org Lett, 2018, 20: 2164–2167

    Article  PubMed  CAS  Google Scholar 

  50. Miller MA, Askevold B, Mikula H, Kohler RH, Pirovich D, Weissleder R. Nat Commun, 2017, 8: 15906

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  51. Miller MA, Mikula H, Luthria G, Li R, Kronister S, Prytyskach M, Kohler RH, Mitchison T, Weissleder R. ACS Nano, 2018, 12: 12814–12826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Stenton BJ, Oliveira BL, Matos MJ, Sinatra L, Bernardes GJL. Chem Sci, 2018, 9: 4185–4189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Bose S, Ngo AH, Do LH. J Am Chem Soc, 2017, 139: 8792–8795

    Article  PubMed  CAS  Google Scholar 

  54. Garner AL, Song F, Koide K. J Am Chem Soc, 2009, 131: 5163–5171

    Article  PubMed  CAS  Google Scholar 

  55. Martínez-Calvo M, Couceiro JR, Destito P, Rodríguez J, Mosquera J, Mascareñas JL. ACS Catal, 2018, 8: 6055–6061

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ding P, Han L, Bai J, Liu J, Luan X. Sci China Chem, 2022, 65: 686–693

    Article  CAS  Google Scholar 

  57. Li J, Zhou J, Wang Y, Yu Y, Liu Q, Yang T, Chen H, Cao H. Sci China Chem, 2022, 65: 68–74

    Article  CAS  Google Scholar 

  58. Weiss JT, Dawson JC, Macleod KG, Rybski W, Fraser C, Torres-Sánchez C, Patton EE, Bradley M, Carragher NO, Unciti-Broceta A. Nat Commun, 2014, 5: 3277

    Article  PubMed  ADS  Google Scholar 

  59. Clavadetscher J, Indrigo E, Chankeshwara SV, Lilienkampf A, Bradley M. Angew Chem Int Ed, 2017, 56: 6864–6868

    Article  CAS  Google Scholar 

  60. Weiss JT, Dawson JC, Fraser C, Rybski W, Torres-Sánchez C, Bradley M, Patton EE, Carragher NO, Unciti-Broceta A. J Med Chem, 2014, 57: 5395–5404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Destito P, Sousa-Castillo A, Couceiro JR, López F, Correa-Duarte MA, Mascareñas JL. Chem Sci, 2019, 10: 2598–2603

    Article  PubMed  CAS  Google Scholar 

  62. Liu Y, Pujals S, Stals PJM, Paulöhrl T, Presolski SI, Meijer EW, Albertazzi L, Palmans ARA. J Am Chem Soc, 2018, 140: 3423–3433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Weiss JT, Carragher NO, Unciti-Broceta A. Sci Rep, 2015, 5: 9329

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  64. Hoop M, Ribeiro AS, Rösch D, Weinand P, Mendes N, Mushtaq F, Chen XZ, Shen Y, Pujante CF, Puigmartí-Luis J, Paredes J, Nelson BJ, Pêgo AP, Pané S. Adv Funct Mater, 2018, 28: 1705920

    Article  Google Scholar 

  65. Xia Z, Li Y, Wu J, Huang YC, Zhao W, Lu Y, Pan Y, Yue X, Wang Y, Dong CL, Wang S, Zou Y. Sci China Chem, 2022, 65: 2588–2595

    Article  CAS  Google Scholar 

  66. Deng B, Zhao X, Li Y, Huang M, Zhang S, Dong F. Sci China Chem, 2023, 66: 78–95

    Article  CAS  Google Scholar 

  67. Hossain A, Bhattacharyya A, Reiser O. Science, 2019, 364: 450

    Article  Google Scholar 

  68. Süsse L, Stoltz BM. Chem Rev, 2021, 121: 4084–4099

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang Y, Chen M, Wang J, Cai F, Ma L, Chen T. Sci China Chem, 2022, 65: 1879–1884

    Article  CAS  Google Scholar 

  70. Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Chem Rev, 2021, 121: 7638–7956

    Article  PubMed  CAS  Google Scholar 

  71. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J Am Chem Soc, 2005, 127: 210–216

    Article  PubMed  CAS  Google Scholar 

  72. Miyazaki Y, Kahlfuss C, Ogawa A, Matsumoto T, Wytko JA, Oohora K, Hayashi T, Weiss J. Chem Eur J, 2017, 23: 13533

    Article  CAS  Google Scholar 

  73. Zhou Y, Lecourt T, Micouin L. Angew Chem Int Ed, 2010, 49: 2607–2610

    Article  CAS  Google Scholar 

  74. He G, Zhang G, Hu J, Sun J, Hu S, Li Y, Liu F, Xiao D, Zou H, Liu G. J Fluorine Chem, 2011, 132: 562–572

    Article  CAS  Google Scholar 

  75. Pintauer T, Matyjaszewski K. Chem Soc Rev, 2008, 37: 1087

    Article  PubMed  CAS  Google Scholar 

  76. Lai L, Xiong Z, Ma L, Chen T. ACS Appl Mater Interfaces, 2020, 12: 40013–40020

    Article  PubMed  CAS  Google Scholar 

  77. Deraedt C, Pinaud N, Astruc D. J Am Chem Soc, 2014, 136: 12092–12098

    Article  PubMed  CAS  Google Scholar 

  78. Du Z, Yu D, Du X, Scott P, Ren J, Qu X. Chem Sci, 2019, 10: 10343–10350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Sasmal PK, Carregal-Romero S, Han AA, Streu CN, Lin Z, Namikawa K, Elliott SL, Köster RW, Parak WJ, Meggers E. ChemBioChem, 2012, 13: 1116–1120

    Article  PubMed  CAS  Google Scholar 

  80. Huang R, Li CH, Cao-Milán R, He LD, Makabenta JM, Zhang X, Yu E, Rotello VM. J Am Chem Soc, 2020, 142: 10723–10729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hong V, Presolski SI, Ma C, Finn MG. Angew Chem Int Ed, 2009, 48: 9879–9883

    Article  CAS  Google Scholar 

  82. Clavadetscher J, Hoffmann S, Lilienkampf A, Mackay L, Yusop RM, Rider SA, Mullins JJ, Bradley M. Angew Chem Int Ed, 2016, 55: 15662–15666

    Article  CAS  Google Scholar 

  83. Huang J, Wang L, Zhao P, Xiang F, Liu J, Zhang S. ACS Catal, 2018, 8: 5941–5946

    Article  CAS  Google Scholar 

  84. Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Chem Rev, 2021, 121: 8756–8867

    Article  PubMed  CAS  Google Scholar 

  85. Zi W, Dean Toste F. Chem Soc Rev, 2016, 45: 4567–4589

    Article  PubMed  CAS  Google Scholar 

  86. Chintawar CC, Yadav AK, Kumar A, Sancheti SP, Patil NT. Chem Rev, 2021, 121: 8478–8558

    Article  PubMed  CAS  Google Scholar 

  87. Blanco Jaimes MC, Rominger F, Pereira MM, Carrilho RMB, Carabineiro SAC, Hashmi ASK. Chem Commun, 2014, 50: 4937

    Article  CAS  Google Scholar 

  88. Witzel S, Hashmi ASK, Xie J. Chem Rev, 2021, 121: 8868–8925

    Article  PubMed  CAS  Google Scholar 

  89. Praveen C. Catal Rev, 2019, 61: 406–446

    Article  CAS  Google Scholar 

  90. Wang J, Chang Y, Luo H, Jiang W, Xu L, Chen T, Zhu X. Biomaterials, 2020, 255: 120153

    Article  PubMed  CAS  Google Scholar 

  91. Vidal C, Tomás-Gamasa M, Destito P, López F, Mascareñas JL. Nat Commun, 2018, 9: 1913

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  92. Corma A, Leyva-Pérez A, Sabater MJ. Chem Rev, 2011, 111: 1657–1712

    Article  PubMed  CAS  Google Scholar 

  93. Scott VJ, Labinger JA, Bercaw JE. Organometallics, 2010, 29: 4090–4096

    Article  CAS  Google Scholar 

  94. Kung KKY, Wong KF, Leung KC, Wong MK. Chem Commun, 2013, 49: 6888

    Article  CAS  Google Scholar 

  95. Gukathasan S, Parkin S, Black EP, Awuah SG. Inorg Chem, 2021, 60: 14582–14593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Messina MS, Stauber JM, Waddington MA, Rheingold AL, Maynard HD, Spokoyny AM. J Am Chem Soc, 2018, 140: 7065–7069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Kung KKY, Ko HM, Cui JF, Chong HC, Leung YC, Wong MK. Chem Commun, 2014, 50: 11899–11902

    Article  CAS  Google Scholar 

  98. Pérez-López AM, Rubio-Ruiz B, Sebastián V, Hamilton L, Adam C, Bray TL, Irusta S, Brennan PM, Lloyd-Jones GC, Sieger D, Santamaría J, Unciti-Broceta A. Angew Chem Int Ed, 2017, 56: 12548–12552

    Article  Google Scholar 

  99. Zhang J, Zhang Y, Geng S, Chen S, Liu Z, Zeng X, He Y, Feng Z. Org Lett, 2020, 22: 2669–2674

    Article  PubMed  CAS  Google Scholar 

  100. Das R, Landis RF, Tonga GY, Cao-Milán R, Luther DC, Rotello VM. ACS Nano, 2018, 13: 229–235

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang H, Ouyang W, Zhang X, Xue J, Lou X, Fan R, Zhao X, Shan L, Jiang T. J Mater Chem B, 2019, 7: 4630–4637

    Article  PubMed  CAS  Google Scholar 

  102. Chan L, Chen X, Gao P, Xie J, Zhang Z, Zhao J, Chen T. ACS Nano, 2021, 15: 3047–3060

    Article  PubMed  CAS  Google Scholar 

  103. Zhao Z, Gao P, Ma L, Chen T. Chem Sci, 2020, 11: 3780–3789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Huang W, Chen Z, Hou L, Feng P, Li Y, Chen T. Dalton Trans, 2020, 49: 11556–11564

    Article  PubMed  CAS  Google Scholar 

  105. Czaplik WM, Mayer M, Cvengros J, von Wangelin AJ. ChemSusChem, 2009, 2: 396–417

    Article  PubMed  CAS  Google Scholar 

  106. Sletten EM, Bertozzi CR. Angew Chem, 2009, 121: 7108–7133

    Article  ADS  Google Scholar 

  107. Huang H, Banerjee S, Qiu K, Zhang P, Blacque O, Malcomson T, Paterson MJ, Clarkson GJ, Staniforth M, Stavros VG, Gasser G, Chao H, Sadler PJ. Nat Chem, 2019, 11: 1041–1048

    Article  PubMed  CAS  Google Scholar 

  108. Seath CP, Burton AJ, Sun X, Lee G, Kleiner RE, MacMillan DWC, Muir TW. Nature, 2023, 616: 574–580

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  109. Geri JB, Oakley JV, Reyes-Robles T, Wang T, McCarver SJ, White CH, Rodriguez-Rivera FP, Parker Jr. DL, Hett EC, Fadeyi OO, Oslund RC, MacMillan DWC. Science, 2020, 367: 1091–1097

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  110. Huang Z, Liu Z, Xie X, Zeng R, Chen Z, Kong L, Fan X, Chen PR. J Am Chem Soc, 2021, 143: 18714–18720

    Article  PubMed  CAS  Google Scholar 

  111. Liu Z, Xie X, Huang Z, Lin F, Liu S, Chen Z, Qin S, Fan X, Chen PR. Chem, 2022, 8: 2179–2191

    Article  CAS  Google Scholar 

  112. Barrett SM, Pitman CL, Walden AG, Miller AJM. J Am Chem Soc, 2014, 136: 14718–14721

    Article  PubMed  CAS  Google Scholar 

  113. Yang L, Bose S, Ngo AH, Do LH. ChemMedChem, 2017, 12: 292–299

    Article  PubMed  CAS  Google Scholar 

  114. Heiden ZM, Rauchfuss TB. J Am Chem Soc, 2007, 129: 14303–14310

    Article  PubMed  CAS  Google Scholar 

  115. Coverdale JPC, Romero-Canelón I, Sanchez-Cano C, Clarkson GJ, Habtemariam A, Wills M, Sadler PJ. Nat Chem, 2018, 10: 347–354

    Article  PubMed  CAS  Google Scholar 

  116. Ni WX, Man WL, Yiu SM, Ho M, Cheung MTW, Ko CC, Che CM, Lam YW, Lau TC. Chem Sci, 2012, 3: 1582

    Article  CAS  Google Scholar 

  117. Ni WX, Man WL, Cheung MTW, Sun RWY, Shu YL, Lam YW, Che CM, Lau TC. Chem Commun, 2011, 47: 2140

    Article  CAS  Google Scholar 

  118. Chen M, Huang X, Shi H, Lai J, Ma L, Lau TC, Chen T. Biomaterials, 2021, 276: 120991

    Article  PubMed  CAS  Google Scholar 

  119. Fan X, Chen PR. Sci China Chem, 2023, 66: 7–9

    Article  CAS  Google Scholar 

  120. Chen M, Cao W, Wang J, Cai F, Zhu L, Ma L, Chen T. J Am Chem Soc, 2022, 144: 20825–20833

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation for Distinguished Young Scholars (82225025), the National Natural Science Foundation of China (21877049, 22177038, 32171296), Guangdong Natural Science Foundation (2020B1515120043, 2022A1515012235), and K.C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Ma or Tianfeng Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Qin, X., Wang, J. et al. Metal complex catalysts broaden bioorthogonal reactions. Sci. China Chem. 67, 428–449 (2024). https://doi.org/10.1007/s11426-023-1615-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1615-1

Navigation