Skip to main content
Log in

Electrosynthesis of 15N-labeled amino acids from 15N-nitrite and ketonic acids

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

15N isotope-labeled amino acids (15N-amino acids) are crucial in the fields of biology, medicine, and chemistry. 15N-amino acids are conventionally synthesized through microbial fermentation and chemical reductive amination of ketonic acids methodologies, which usually require complicated procedures, high temperatures, or toxic cyanide usage, causing energy and environmental concerns. Here, we report a sustainable pathway to synthesize 15N-amino acids from readily available 15N-nitrite (15NO2) and biomass-derived ketonic acids under ambient conditions driven by renewable electricity. A mechanistic study demonstrates a 15N-nitrite→15NH2OH→15N-pyruvate oxime→15N-alanine reaction pathway for 15N-alanine synthesis. Moreover, this electro-chemical strategy can synthesize six 15N-amino acids with 68%-95% yields. Furthermore, a 15N-labeled drug of 15N-tiopronin, the most commonly used hepatitis treatment drug, is fabricated using 15N-glycine as the building block. Impressively, 15N sources can be recycled by the electrooxidation of 15NH4+ to 15NO2 with a method economy. This work opens a venue for the green synthesis of 15N-labeled compounds or drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Velyvis A, Vaynberg J, Yang Y, Vinogradova O, Zhang Y, Wu C, Qin J. Nat Struct Mol Biol, 2003, 10: 558–564

    Article  CAS  Google Scholar 

  2. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Science, 1996, 274: 1531–1534

    Article  CAS  PubMed  Google Scholar 

  3. Ramirez B, Durst MA, Lavie A, Caffrey M. Sci Rep, 2019, 9: 12798

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meselson M, Stahl FW. Proc Natl Acad Sci USA, 1958, 44: 671–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang H, Dong Y, Zheng C, Sandoval CA, Wang X, Makha M, Li Y. Chem, 2018, 4: 2883–2893

    Article  CAS  Google Scholar 

  6. Liu C, Chen Z, Yan H, Xi S, Yam KM, Gao J, Du Y, Li J, Zhao X, Xie K, Xu H, Li X, Leng K, Pennycook SJ, Liu B, Zhang C, Koh MJ, Loh KP. Sci Adv, 2019, 5: eaay1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D’Este M, Alvarado-Morales M, Angelidaki I. Biotechnol Adv, 2018, 36: 14–25

    Article  PubMed  Google Scholar 

  8. Whittaker JW. Methods Mol Biol, 2007, 389: 175–188

    Article  CAS  PubMed  Google Scholar 

  9. Borch RF, Bernstein MD, Durst HD. J Am Chem Soc, 1971, 93: 2897–2904

    Article  CAS  Google Scholar 

  10. Ogo S, Uehara K, Abura T, Fukuzumi S. J Am Chem Soc, 2004, 126: 3020–3021

    Article  CAS  PubMed  Google Scholar 

  11. Wu Y, Liu C, Wang C, Lu S, Zhang B. Angew Chem Int Ed, 2020, 59: 21170–21175

    Article  CAS  Google Scholar 

  12. Liu X, Liu R, Qiu J, Cheng X, Li G. Angew Chem Int Ed, 2020, 59: 13962–13967

    Article  CAS  Google Scholar 

  13. Liu S, Cheng X. Nat Commun, 2022, 13: 425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ko BH, Hasa B, Shin H, Zhao Y, Jiao F. J Am Chem Soc, 2022, 144: 1258–1266

    Article  CAS  PubMed  Google Scholar 

  15. Panja S, Ahsan S, Pal T, Kolb S, Ali W, Sharma S, Das C, Grover J, Dutta A, Werz DB, Paul A, Maiti D. Chem Sci, 2022, 13: 9432–9439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Yu Y, Jia R, Zhang C, Zhang B. Natl Sci Rev, 2019, 6: 730–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han S, Li H, Li T, Chen F, Yang R, Yu Y, Zhang B. Nat Catal, 2023, DOI:10.1038/s41929-023-00951-2

  18. Jouny M, Lv JJ, Cheng T, Ko BH, Zhu JJ, Goddard III WA, Jiao F. Nat Chem, 2019, 11: 846–851

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y, Jiang Z, Lin Z, Liang Y, Wang H. Nat Sustain, 2021, 4: 725–730

    Article  Google Scholar 

  20. Tao Z, Rooney CL, Liang Y, Wang H. J Am Chem Soc, 2021, 143: 19630–19642

    Article  CAS  PubMed  Google Scholar 

  21. Rooney CL, Wu Y, Tao Z, Wang H. J Am Chem Soc, 2021, 143: 19983–19991

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Zhang Y, Kuruvinashetti K, Kornienko N. Nat Rev Chem, 2022, 6: 303–319

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Kornienko N. Chem Sci, 2022, 13: 3957–3964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo C, Zhou W, Lan X, Wang Y, Li T, Han S, Yu Y, Zhang B. J Am Chem Soc, 2022, 144: 16006–16011

    Article  CAS  PubMed  Google Scholar 

  25. Meng N, Ma X, Wang C, Wang Y, Yang R, Shao J, Huang Y, Xu Y, Zhang B, Yu Y. ACS Nano, 2022, 16: 9095–9104

    Article  CAS  PubMed  Google Scholar 

  26. Huang Y, Wang Y, Wu Y, Yu Y, Zhang B. Sci China Chem, 2021, 65: 204–206

    Article  Google Scholar 

  27. Fukushima T, Yamauchi M. Chem Commun, 2019, 55: 14721–14724

    Article  CAS  Google Scholar 

  28. Kim JE, Jang JH, Lee KM, Balamurugan M, Jo YI, Lee MY, Choi S, Im SW, Nam KT. Angew Chem Int Ed, 2021, 60: 21943–21951

    Article  CAS  Google Scholar 

  29. Kulisch J, Nieger M, Stecker F, Fischer A, Waldvogel SR. Angew Chem Int Ed, 2011, 50: 5564–5567

    Article  CAS  Google Scholar 

  30. Edinger C, Kulisch J, Waldvogel SR. Beilstein J Org Chem, 2015, 11: 294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lips S, Waldvogel SR. ChemElectroChem, 2019, 6: 1649–1660

    Article  CAS  Google Scholar 

  32. Pérez-Gallent E, Figueiredo MC, Katsounaros I, Koper MTM. Electrochim Acta, 2017, 227: 77–84

    Article  Google Scholar 

  33. Zhu S, Jiang B, Cai WB, Shao M. J Am Chem Soc, 2017, 139: 15664–15667

    Article  CAS  PubMed  Google Scholar 

  34. Pirali T, Serafini M, Cargnin S, Genazzani AA. J Med Chem, 2019, 62: 5276–5297

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Qiu X, Guo W, Yan B, Zhang S. Med Oncol, 2015, 32: 238

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (22271213) and the National Postdoctoral Science Foundation of China (2022M722357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Li, M., Li, T. et al. Electrosynthesis of 15N-labeled amino acids from 15N-nitrite and ketonic acids. Sci. China Chem. 66, 1854–1859 (2023). https://doi.org/10.1007/s11426-023-1613-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1613-x

Keywords

Navigation