Skip to main content
Log in

Engineering intermolecular charge transfer in chiral organometallic crystals by rational doping for high-contrast CPL switches

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of circularly polarized luminescence (CPL) switches is of great importance but challenging. Herein, a charge donor/acceptor pair comprising two chiral gold(I)-isocyanide complexes was designed to construct light-harvesting system via intermolecular charge-transfer (CT) interactions. By doping nonemissive S-AuI into blue-emitting S-AuCN, (S-AuCN)1−x(S-AuI)x (0 ⩽ x ⩽ 3.4%) with tunable emission from blue to red was achieved. This large red-shifted emission was realized based on the remarkable change of the electronic properties between the S-AuCN dimer and red-emitting (S-AuCN)-(S-AuI) CT pair, and the resulting energy-transfer (EnT) process between them. Importantly, the EnT process can be switched off/on by external stimuli of grinding and CH2Cl2 fuming, giving rise to high-contrast (blue versus red) CPL switching properties. This study opens a novel avenue for developing CPL switches by constructing light-harvesting CT-doped systems based on chiral organometallic complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang L, Wang HX, Li S, Liu M. Chem Soc Rev, 2020, 49: 9095–9120

    Article  CAS  PubMed  Google Scholar 

  2. Zhang XP, Mei JF, Lai JC, Li CH, You XZ. J Mater Chem C, 2015, 3: 2350–2357

    Article  CAS  Google Scholar 

  3. Cheng Q, Hao A, Xing P. Nat Commun, 2021, 12: 6320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peng QC, Luo XM, Qin YJ, Wang T, Bai B, Wei XL, Li K, Zang SQ. CCS Chem, 2022, 4: 3686–3692

    Article  CAS  Google Scholar 

  5. Khorloo M, Yu X, Cheng Y, Zhang H, Yu S, Lam JWY, Zhu M, Tang BZ. ACS Nano, 2021, 15: 1397–1406

    Article  CAS  PubMed  Google Scholar 

  6. Lee S, Kim KY, Jung SH, Lee JH, Yamada M, Sethy R, Kawai T, Jung JH. Angew Chem Int Ed, 2019, 58: 18878–18882

    Article  CAS  Google Scholar 

  7. Li W, Gu Q, Wang X, Zhang D, Wang Y, He X, Wang W, Yang H. Angew Chem Int Ed, 2021, 60: 9507–9515

    Article  CAS  Google Scholar 

  8. Wang X, Zhi W, Ma C, Zhu Z, Qi W, Huang J, Yan Y. JACS Au, 2021, 1: 156–163

    Article  CAS  PubMed  Google Scholar 

  9. Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Sci China Chem, 2021, 64: 2060–2104

    Article  CAS  Google Scholar 

  10. Yan J, Ota F, San Jose BA, Akagi K. Adv Funct Mater, 2017, 27: 1604529

    Article  Google Scholar 

  11. He Y, Lin S, Guo J, Li Q. Aggregate, 2021, 2: e141

    CAS  Google Scholar 

  12. He Y, Zhang S, Bisoyi HK, Qiao J, Chen H, Gao JJ, Guo J, Li Q. Angew Chem Int Ed, 2021, 60: 27158–27163

    Article  CAS  Google Scholar 

  13. Chen X, Zhang S, Chen X, Li Q. ChemPhotoChem, 2022, 6: e202100256

    Article  CAS  Google Scholar 

  14. Hasegawa Y, Nakagawa T, Kawai T. Coord Chem Rev, 2010, 254: 2643–2651

    Article  CAS  Google Scholar 

  15. Wenger OS. Chem Rev, 2013, 113: 3686–3733

    Article  CAS  PubMed  Google Scholar 

  16. Ai Y, Li Y, Chan MHY, Xiao G, Zou B, Yam VWW. J Am Chem Soc, 2021, 143: 10659–10667

    Article  CAS  PubMed  Google Scholar 

  17. Huang RW, Wei YS, Dong XY, Wu XH, Du CX, Zang SQ, Mak TCW. Nat Chem, 2017, 9: 689–697

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Zeng Q, Zou B, Liu Y, Xu B, Tian W. Angew Chem Int Ed, 2018, 57: 15670–15674

    Article  CAS  Google Scholar 

  19. Tian Y, Yang J, Liu Z, Gao M, Li X, Che W, Fang M, Li Z. Angew Chem Int Ed, 2021, 60: 20259–20263

    Article  CAS  Google Scholar 

  20. Hu L, Zhang Q, Li X, Serpe MJ. Mater Horiz, 2019, 6: 1774–1793

    Article  CAS  Google Scholar 

  21. Takaishi K, Yasui M, Ema T. J Am Chem Soc, 2018, 140: 5334–5338

    Article  CAS  PubMed  Google Scholar 

  22. Lei Y, Dai W, Guan J, Guo S, Ren F, Zhou Y, Shi J, Tong B, Cai Z, Zheng J, Dong Y. Angew Chem Int Ed, 2020, 59: 16054–16060

    Article  CAS  Google Scholar 

  23. Sun MJ, Zhong YW, Yao J. Angew Chem Int Ed, 2018, 57: 7820–7825

    Article  CAS  Google Scholar 

  24. Sun MJ, Liu Y, Zeng W, Zhao YS, Zhong YW, Yao J. J Am Chem Soc, 2019, 141: 6157–6161

    Article  CAS  PubMed  Google Scholar 

  25. Sun MJ, Liu Y, Yan Y, Li R, Shi Q, Zhao YS, Zhong YW, Yao J. J Am Chem Soc, 2018, 140: 4269–4278

    Article  CAS  PubMed  Google Scholar 

  26. Sun L, Wang Y, Yang F, Zhang X, Hu W. Adv Mater, 2019, 31: 1902328

    Article  Google Scholar 

  27. Han X, Lei Y, Liao Q, Fu H. Angew Chem Int Ed, 2021, 60: 3037–3046

    Article  CAS  Google Scholar 

  28. Schmidbaur H, Schier A. Chem Soc Rev, 2012, 41: 370–412

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, He B, Wu W, Alam P, Zhang H, Gong J, Song F, Wang Z, Sung HHY, Williams ID, Wang Z, Lam JWY, Tang BZ. J Am Chem Soc, 2020, 142: 14608–14618

    Article  CAS  PubMed  Google Scholar 

  30. Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T. Nat Commun, 2013, 4: 2009

    Article  PubMed  Google Scholar 

  31. Luong LMC, Malwitz MA, Moshayedi V, Olmstead MM, Balch AL. J Am Chem Soc, 2020, 142: 5689–5701

    Article  CAS  PubMed  Google Scholar 

  32. Malwitz MA, Lim SH, White-Morris RL, Pham DM, Olmstead MM, Balch AL. J Am Chem Soc, 2012, 134: 10885–10893

    Article  CAS  PubMed  Google Scholar 

  33. Lei YL, Jin Y, Zhou DY, Gu W, Shi XB, Liao LS, Lee ST. Adv Mater, 2012, 24: 5345–5351

    Article  CAS  PubMed  Google Scholar 

  34. Liu XT, Hua W, Nie HX, Chen M, Chang Z, Bu XH. Natl Sci Rev, 2022, 9: nwab222

    Article  CAS  PubMed  Google Scholar 

  35. Zhuo M, Su Y, Qu Y, Chen S, He G, Yuan Y, Liu H, Tao Y, Wang X, Liao L. Adv Mater, 2021, 33: 2102719

    Article  CAS  Google Scholar 

  36. White-Morris RL, Stender M, Tinti DS, Balch AL, Rios D, Attar S. Inorg Chem, 2003, 42: 3237–3244

    Article  CAS  PubMed  Google Scholar 

  37. Ecken H, Olmstead MM, Noll BC, Attar S, Schlyer B, Balch AL. J Chem Soc Dalton Trans, 1998, 3715–3720

  38. Mirzadeh N, Privér SH, Blake AJ, Schmidbaur H, Bhargava SK. Chem Rev, 2020, 120: 7551–7591

    Article  CAS  PubMed  Google Scholar 

  39. Ando A, Ozaki K, Shiina U, Nagao E, Hisano K, Kamada K, Tsutsumi O. Aggregate, 2022, 3: e125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA1200301), the National Natural Science Foundation of China (92061201, 21825106, 22105177), the China Postdoctoral Science Foundation (2021TQ0294) and Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Quan Zang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YJ., Chen, L., Wang, ZY. et al. Engineering intermolecular charge transfer in chiral organometallic crystals by rational doping for high-contrast CPL switches. Sci. China Chem. 66, 2011–2018 (2023). https://doi.org/10.1007/s11426-023-1612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1612-y

Keywords

Navigation