Skip to main content
Log in

Metal-organic cages containing two types of binding sites: trapping hydrocarbon gas in solution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The design and synthesis of artificial molecular containers for the encapsulation of hydrocarbon gases to study their host-guest chemistry are highly important for potential application in gas storage, separation, and understanding of their biological functions. In this work, we report the subcomponent self-assembly of four cubic Zn8L12Br4 (HL = N-(4-R)-1-(5-methyl-1H-imidazole-4-yl)methanimine) cages with good solubility in chloroform, which are capable of binding hydrocarbon gases including methane, ethane, and ethene in solution at ambient temperature. Two types of gas binding sites (one is in the cavity, and the other is at the window) are discovered in these cages, which are documented by nuclear magnetic resonance (NMR) spectra and density functional theory (DFT) calculations. Their performance of encapsulation of hydrocarbon gases can be tuned by carefully adjusting substituent groups. These metal-organic cages containing two types of binding sites provide new artificial models to mimic the structures and functions of biological systems in binding and transforming hydrocarbon gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Service RF. Science, 2014, 346: 538–541

    Article  CAS  PubMed  Google Scholar 

  2. Hanson RS, Hanson TE. Microbiol Rev, 1996, 60: 439–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sholl DS, Lively RP. Nature, 2016, 532: 435–437

    Article  PubMed  Google Scholar 

  4. Lawton TJ, Rosenzweig AC. Science, 2016, 352: 892–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cui S, Kubota T, Nishiyama T, Ishida JK, Shigenobu S, Shibata TF, Toyoda A, Hasebe M, Shirasu K, Yoshida S. Sci Adv, 2020, 6: eabc2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M. Nature, 2009, 460: 1026–1030

    Article  CAS  PubMed  Google Scholar 

  7. Wang KLC, Li H, Ecker JR. Plant Cell, 2002, 14: S131–S151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alonso JM, Stepanova AN. Science, 2004, 306: 1513–1515

    Article  CAS  PubMed  Google Scholar 

  9. Rosenzweig AC, Brandstetter H, Whittington DA, Nordlund P, Lippard SJ, Frederick CA. Proteins, 1997, 29: 141–152

    Article  CAS  PubMed  Google Scholar 

  10. Cook TR, Stang PJ. Chem Rev, 2015, 115: 7001–7045

    Article  CAS  PubMed  Google Scholar 

  11. Takezawa H, Shitozawa K, Fujita M. Nat Chem, 2020, 12: 574–578

    Article  CAS  PubMed  Google Scholar 

  12. Kaphan DM, Levin MD, Bergman RG, Raymond KN, Toste FD. Science, 2015, 350: 1235–1238

    Article  CAS  PubMed  Google Scholar 

  13. Chu D, Gong W, Jiang H, Tang X, Cui Y, Liu Y. CCS Chem, 2021, 3: 1692–1700

    Google Scholar 

  14. Yoshizawa M, Tamura M, Fujita M. Science, 2006, 312: 251–254

    Article  CAS  PubMed  Google Scholar 

  15. Cai LX, Li SC, Yan DN, Zhou LP, Guo F, Sun QF. J Am Chem Soc, 2018, 140: 4869–4876

    Article  CAS  PubMed  Google Scholar 

  16. Fang Y, Powell JA, Li E, Wang Q, Perry Z, Kirchon A, Yang X, Xiao Z, Zhu C, Zhang L, Huang F, Zhou HC. Chem Soc Rev, 2019, 48: 4707–4730

    Article  CAS  PubMed  Google Scholar 

  17. Brzechwa-Chodzyńska A, Drożdż W, Harrowfield J, Stefankiewicz AR. Coord Chem Rev, 2021, 434: 213820

    Article  Google Scholar 

  18. Gao Z, Jia J, Fan W, Liao T, Zhang X. Chin Chem Lett, 2022, 33: 4415–4420

    Article  CAS  Google Scholar 

  19. Yamashina M, Sartin MM, Sei Y, Akita M, Takeuchi S, Tahara T, Yoshizawa M. J Am Chem Soc, 2015, 137: 9266–9269

    Article  CAS  PubMed  Google Scholar 

  20. Zhang D, Ronson TK, Zou YQ, Nitschke JR. Nat Rev Chem, 2021, 5: 168–182

    Article  CAS  PubMed  Google Scholar 

  21. Cui PF, Liu XR, Lin YJ, Li ZH, Jin GX. J Am Chem Soc, 2022, 144: 6558–6565

    Article  CAS  PubMed  Google Scholar 

  22. Wang LJ, Bai S, Han YF. J Am Chem Soc, 2022, 144: 16191–16198

    Article  CAS  PubMed  Google Scholar 

  23. Zhang D, Ronson TK, Lavendomme R, Nitschke JR. J Am Chem Soc, 2019, 141: 18949–18953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sainaba AB, Venkateswarulu M, Bhandari P, Arachchige KSA, Clegg JK, Mukherjee PS. J Am Chem Soc, 2022, 144: 7504–7513

    Article  CAS  PubMed  Google Scholar 

  25. Mal P, Breiner B, Rissanen K, Nitschke JR. Science, 2009, 324: 1697–1699

    Article  CAS  PubMed  Google Scholar 

  26. Fujita D, Suzuki R, Fujii Y, Yamada M, Nakama T, Matsugami A, Hayashi F, Weng JK, Yagi-Utsumi M, Fujita M. Chem, 2021, 7: 2672–2683

    Article  CAS  Google Scholar 

  27. Davies JA, Ronson TK, Nitschke JR. Chem, 2022, 8: 1099–1106

    Article  CAS  Google Scholar 

  28. Pilgrim BS, Champness NR. ChemPlusChem, 2020, 85: 1842–1856

    Article  CAS  PubMed  Google Scholar 

  29. McTernan CT, Davies JA, Nitschke JR. Chem Rev, 2022, 122: 10393–10437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Percástegui EG, Ronson TK, Nitschke JR. Chem Rev, 2020, 120: 13480–13544

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang LJ, Li X, Bai S, Wang YY, Han YF. J Am Chem Soc, 2020, 142: 2524–2531

    Article  CAS  PubMed  Google Scholar 

  32. Li JR, Yu J, Lu W, Sun LB, Sculley J, Balbuena PB, Zhou HC. Nat Commun, 2013, 4: 1538

    Article  PubMed  Google Scholar 

  33. Riddell IA, Smulders MMJ, Clegg JK, Nitschke JR. Chem Commun, 2011, 47: 457–459

    Article  CAS  Google Scholar 

  34. Roukala J, Zhu J, Giri C, Rissanen K, Lantto P, Telkki VV. J Am Chem Soc, 2015, 137: 2464–2467

    Article  CAS  PubMed  Google Scholar 

  35. Zhang D, Ronson TK, Greenfield JL, Brotin T, Berthault P, Léonce E, Zhu JL, Xu L, Nitschke JR. J Am Chem Soc, 2019, 141: 8339–8345

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Dong X, Lu W, Luo D, Zhu XW, Li X, Zhou XP, Li D. J Am Chem Soc, 2019, 141: 11621–11627

    Article  CAS  PubMed  Google Scholar 

  37. Zhu J, Zhang D, Ronson TK, Wang W, Xu L, Yang H, Nitschke JR. Angew Chem Int Ed, 2021, 60: 11789–11792

    Article  CAS  Google Scholar 

  38. Garel L, Dutasta JP, Collet A. Angew Chem Int Ed, 1993, 32: 1169–1171

    Article  Google Scholar 

  39. Chaffee KE, Fogarty HA, Brotin T, Goodson BM, Dutasta JP. J Phys Chem A, 2009, 113: 13675–13684

    Article  CAS  PubMed  Google Scholar 

  40. Branda N, Wyler R, Rebek Jr. J. Science, 1994, 263: 1267–1268

    Article  CAS  PubMed  Google Scholar 

  41. Little MA, Donkin J, Fisher J, Halcrow MA, Loder J, Hardie MJ. Angew Chem Int Ed, 2012, 51: 764–766

    Article  CAS  Google Scholar 

  42. Nakazawa J, Hagiwara J, Mizuki M, Shimazaki Y, Tani F, Naruta Y. Angew Chem Int Ed, 2005, 44: 3744–3746

    Article  CAS  Google Scholar 

  43. Luo D, Li M, Zhou XP, Li D. Chem Eur J, 2018, 24: 7108–7113

    Article  CAS  PubMed  Google Scholar 

  44. Kleywegt GJ, Jones TA. Acta Crystlogr D Biol Crystlogr, 1994, 50: 178–185

    Article  CAS  Google Scholar 

  45. Howson SE, Allan LEN, Chmel NP, Clarkson GJ, Deeth RJ, Faulkner AD, Simpson DH, Scott P. Dalton Trans, 2011, 40: 10416–10433

    Article  CAS  PubMed  Google Scholar 

  46. Mecozzi S, Rebek, Jr. J. Chem Eur J, 1998, 4: 1016–1022

    Article  CAS  Google Scholar 

  47. Davis AV, Raymond KN. J Am Chem Soc, 2005, 127: 7912–7919

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22171106, 21871172, 22101099, 21731002), Guangdong Major Project of Basic and Applied Research (2019B030302009), the Fundamental Research Funds for the Central Universities (21622103), Guangdong Natural Science Foundation (2022A1515011937), Guangzhou Science and Technology Program (202002030411), the Special Fund Project for Science and Technology of Guangdong (STKJ2021172), and Jinan University. We thank the high-performance public computing service platform of Jinan University for the supporting of computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Zhou.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, MY., Xie, M., Zhou, CW. et al. Metal-organic cages containing two types of binding sites: trapping hydrocarbon gas in solution. Sci. China Chem. 66, 2004–2010 (2023). https://doi.org/10.1007/s11426-023-1600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1600-1

Keywords

Navigation