Skip to main content
Log in

Single-atom skeletal editing of 2H-indazoles enabled by difluorocarbene

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel difluorocarbene promoted single-atom skeletal editing of 2H-indazoles is demonstrated herein. Ethyl bromodifluoroacetate was severed as the difluorocarbene source in the current protocol, facilitating the cleavage of the N−N bond via carbon atom insertion. This metal-free ring expansion reaction enables the late-stage diversification of indazole skeletons, assembling a diverse array of functionalized quinazolin-4(3H)-ones in decent yields with excellent functional group compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szpilman AM, Carreira EM. Angew Chem Int Ed, 2010, 49: 9592–9628

    Article  CAS  Google Scholar 

  2. Huigens III RW, Morrison KC, Hicklin RW, Flood Jr TA, Richter MF, Hergenrother PJ. Nat Chem, 2013, 5: 195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jurczyk J, Woo J, Kim SF, Dherange BD, Sarpong R, Levin MD. Nat Synth, 2022, 1: 352–364

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hui C, Wang Z, Wang S, Xu C. Org Chem Front, 2022, 9: 1451–1457

    Article  CAS  Google Scholar 

  5. Demjanov NJ, Luschnikov M. J Russ Phys Chem Soc, 1903, 35: 26–42

    Google Scholar 

  6. Wynberg H. Chem Rev, 1960, 60: 169–184

    Article  CAS  Google Scholar 

  7. Hill JHM. J Org Chem, 1965, 30: 620–622

    Article  CAS  Google Scholar 

  8. Demir AS, Aybey A. Tetrahedron, 2008, 64: 11256–11261

    Article  CAS  Google Scholar 

  9. Hilmey DG, Paquette LA. Org Lett, 2005, 7: 2067–2069

    Article  CAS  PubMed  Google Scholar 

  10. Kammath VB, Šolomek T, Ngoy BP, Heger D, Klán P, Rubina M, Givens RS. J Org Chem, 2013, 78: 1718–1729

    Article  CAS  PubMed  Google Scholar 

  11. Lyu H, Kevlishvili I, Yu X, Liu P, Dong G. Science, 2021, 372: 175–182

    Article  CAS  PubMed  Google Scholar 

  12. Ma D, Martin BS, Gallagher KS, Saito T, Dai M. J Am Chem Soc, 2021, 143: 16383–16387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu S, Cheng X. Nat Commun, 2022, 13: 425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Lu H, He Y, Jing C, Wei H. J Am Chem Soc, 2022, 144: 22433–22439

    Article  CAS  PubMed  Google Scholar 

  15. Finkelstein P, Reisenbauer JC, Botlik BB, Green O, Florin A, Morandi B. Chem Sci, 2023, 14: 2954–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song L, Tian X, Farshadfar K, Shiri F, Rominger F, Ariafard A, Hashmi ASK. Nat Commun, 2023, 14: 831–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin S, Nguyen VT, Dang HT, Nguyen DP, Arman HD, Larionov OV. J Am Chem Soc, 2017, 139: 11365–11368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roque JB, Kuroda Y, Göttemann LT, Sarpong R. Nature, 2018, 564: 244–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kennedy SH, Dherange BD, Berger KJ, Levin MD. Nature, 2021, 593: 223–227

    Article  CAS  PubMed  Google Scholar 

  20. Jurczyk J, Lux MC, Adpressa D, Kim SF, Lam Y, Yeung CS, Sarpong R. Science, 2021, 373: 1004–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hui C, Brieger L, Strohmann C, Antonchick AP. J Am Chem Soc, 2021, 143: 18864–18870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qin H, Cai W, Wang S, Guo T, Li G, Lu H. Angew Chem Int Ed, 2021, 60: 20678–20683

    Article  CAS  Google Scholar 

  23. Bartholomew GL, Carpaneto F, Sarpong R. J Am Chem Soc, 2022, 144: 22309–22315

    Article  CAS  PubMed  Google Scholar 

  24. Woo J, Christian AH, Burgess SA, Jiang Y, Mansoor UF, Levin MD. Science, 2022, 376: 527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pennington LD, Moustakas DT. J Med Chem, 2017, 60: 3552–3579

    Article  CAS  PubMed  Google Scholar 

  26. Patel SC, Burns NZ. J Am Chem Soc, 2022, 144: 17797–17802

    Article  CAS  PubMed  Google Scholar 

  27. Reisenbauer JC, Green O, Franchino A, Finkelstein P, Morandi B. Science, 2022, 377: 1104–1109

    Article  CAS  PubMed  Google Scholar 

  28. Kelly PQ, Filatov AS, Levin MD. Angew Chem Int Ed, 2022, 61: e202213041

    CAS  Google Scholar 

  29. Dherange BD, Kelly PQ, Liles JP, Sigman MS, Levin MD. J Am Chem Soc, 2021, 143: 11337–11344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hyland EE, Kelly PQ, McKillop AM, Dherange BD, Levin MD. J Am Chem Soc, 2022, 144: 19258–19264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ni C, Hu J. Synthesis, 2014, 46: 842–863

    Article  Google Scholar 

  32. Zhang W, Wang Y. Tetrahedron Lett, 2018, 59: 1301–1308

    Article  CAS  Google Scholar 

  33. Dilman AD, Levin VV. Acc Chem Res, 2018, 51: 1272–1280

    Article  CAS  PubMed  Google Scholar 

  34. Lin JH, Xiao JC. Acc Chem Res, 2020, 53: 1498–1510

    Article  CAS  PubMed  Google Scholar 

  35. Zhou W, Pan WJ, Chen J, Zhang M, Lin JH, Cao W, Xiao JC. Chem Commun, 2021, 57: 9316–9329

    Article  CAS  Google Scholar 

  36. Hu M, Ni C, Li L, Han Y, Hu J. J Am Chem Soc, 2015, 137: 14496–14501

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Z, Yu W, Wu C, Wang C, Zhang Y, Wang J. Angew Chem Int Ed, 2016, 55: 273–277

    Article  CAS  Google Scholar 

  38. Feng Z, Min QQ, Zhang X. Org Lett, 2016, 18: 44–47

    Article  CAS  PubMed  Google Scholar 

  39. Deng XY, Lin JH, Xiao JC. Org Lett, 2016, 18: 4384–4387

    Article  CAS  PubMed  Google Scholar 

  40. Xie Q, Ni C, Zhang R, Li L, Rong J, Hu J. Angew Chem Int Ed, 2017, 56: 3206–3210

    Article  CAS  Google Scholar 

  41. Zhu SQ, Liu YL, Li H, Xu XH, Qing FL. J Am Chem Soc, 2018, 140: 11613–11617

    Article  CAS  PubMed  Google Scholar 

  42. Feng Z, Min QQ, Fu XP, An L, Zhang X. Nat Chem, 2017, 9: 918–923

    Article  CAS  PubMed  Google Scholar 

  43. Fu XP, Xue XS, Zhang XY, Xiao YL, Zhang S, Guo YL, Leng X, Houk KN, Zhang X. Nat Chem, 2019, 11: 948–956

    Article  CAS  PubMed  Google Scholar 

  44. Ma X, Song Q. Org Lett, 2019, 21: 7375–7379

    Article  CAS  PubMed  Google Scholar 

  45. Sheng H, Su J, Li X, Li X, Song Q. Org Lett, 2021, 23: 7781–7786

    Article  CAS  PubMed  Google Scholar 

  46. Peng L, Wang H, Guo C. J Am Chem Soc, 2021, 143: 6376–6381

    Article  CAS  PubMed  Google Scholar 

  47. Wang F, Fu R, Chen J, Rong J, Wang E, Zhang J, Zhang Z, Jiang Y. Chem Commun, 2022, 58: 3477–3480

    Article  CAS  Google Scholar 

  48. Sheng H, Su J, Li X, Song Q. CCS Chem, 2022, 4: 3820–3831

    Article  CAS  Google Scholar 

  49. Hayashi H, Katsuyama H, Takano H, Harabuchi Y, Maeda S, Mita T. Nat Synth, 2022, 1: 804–814

    Article  Google Scholar 

  50. Wang X, Pan S, Luo Q, Wang Q, Ni C, Hu J. J Am Chem Soc, 2022, 144: 12202–12211

    Article  CAS  PubMed  Google Scholar 

  51. Cui H, Ban C, Zhu F, Yuan J, Du J, Huang Y, Xiao Q, Huang C, Huang J, Zhu Q. Org Lett, 2023, 25: 99–103

    Article  CAS  PubMed  Google Scholar 

  52. Liang H, Liu R, Zhou M, Fu Y, Ni C, Hu J. Org Lett, 2020, 22: 7047–7051

    Article  CAS  PubMed  Google Scholar 

  53. Jia Y, Yuan Y, Huang J, Jiang ZX, Yang Z. Org Lett, 2021, 23: 2670–2675

    Article  CAS  PubMed  Google Scholar 

  54. Ilin EA, Smirnov VO, Volodin AD, Korlyukov AA, Dilman AD. Chem Commun, 2020, 56: 7140–7142

    Article  CAS  Google Scholar 

  55. Smirnov VO, Volodin AD, Korlyukov AA, Dilman AD. Angew Chem Int Ed, 2020, 59: 12428–12431

    Article  CAS  Google Scholar 

  56. Trifonov AL, Dilman AD. Org Lett, 2021, 23: 6977–6981

    Article  CAS  PubMed  Google Scholar 

  57. Smirnov VO, Volodin AD, Korlyukov AA, Dilman AD. Chem Commun, 2021, 57: 4823–4826

    Article  CAS  Google Scholar 

  58. Li XF, Zhang XG, Chen F, Zhang XH. J Org Chem, 2018, 83: 12815–12821

    Article  CAS  PubMed  Google Scholar 

  59. Ma X, Deng S, Song Q. Org Chem Front, 2018, 5: 3505–3509

    Article  CAS  Google Scholar 

  60. Su J, Ma X, Ou Z, Song Q. ACS Cent Sci, 2020, 6: 1819–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim Y, Heo J, Kim D, Chang S, Seo S. Nat Commun, 2020, 11: 4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou S, Sun ZY, Zhu K, Zhao W, Tang X, Guo M, Wang G. Org Lett, 2021, 23: 2205–2211

    Article  CAS  PubMed  Google Scholar 

  63. Liu X, Sheng H, Zhou Y, Song Q. Org Lett, 2021, 23: 2543–2547

    Article  CAS  PubMed  Google Scholar 

  64. Hu C, Mou D, Zhang X, Fu Y, Huo C, Du Z. Org Biomol Chem, 2022, 20: 8120–8124

    Article  CAS  PubMed  Google Scholar 

  65. Zuo D, Zhang T, Zhao J, Luo W, Wang C, Li P. Org Lett, 2022, 24: 4630–4634

    Article  CAS  PubMed  Google Scholar 

  66. Chen S, Huang H, Li X, Ma X, Su J, Song Q. Org Lett, 2023, 25: 1178–1182

    Article  CAS  PubMed  Google Scholar 

  67. Ma X, Zhou Y, Song Q. Org Lett, 2018, 20: 4777–4781

    Article  CAS  PubMed  Google Scholar 

  68. Yan Y, Cui C, Wang J, Li S, Tang L, Liu Y. Org Biomol Chem, 2019, 17: 8071–8074

    Article  CAS  PubMed  Google Scholar 

  69. Ma X, Su J, Zhang X, Song Q. iScience, 2019, 19: 1–13

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hou X, Zhou S, Li Y, Guo M, Zhao W, Tang X, Wang G. Org Lett, 2020, 22: 9313–9318

    Article  CAS  PubMed  Google Scholar 

  71. Yu C, Ma X, Song Q. Org Chem Front, 2020, 7: 2950–2954

    Article  CAS  Google Scholar 

  72. Su J, Hu X, Huang H, Guo Y, Song Q. Nat Commun, 2021, 12: 4986–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu X, Zhou Y, Ma X, Song Q. Chem Commun, 2019, 55: 8079–8082

    Article  CAS  Google Scholar 

  74. Zhang G, Shi Q, Hou M, Yang K, Wang S, Wang S, Li W, Li C, Qiu J, Xu H, Zhou L, Wang C, Li SJ, Lan Y, Song Q. CCS Chem, 2022, 4: 1671–1679

    Article  CAS  Google Scholar 

  75. Sheng H, Chen Z, Li X, Su J, Song Q. Org Chem Front, 2022, 9: 3000–3005

    Article  CAS  Google Scholar 

  76. Liang Y, Tan Z, Jiang H, Zhu Z, Zhang M. Org Lett, 2019, 21: 4725–4728

    Article  CAS  PubMed  Google Scholar 

  77. Senadi GC, Kudale VS, Wang JJ. Green Chem, 2019, 21: 979–985

    Article  CAS  Google Scholar 

  78. He J, Dong J, Su L, Wu S, Liu L, Yin SF, Zhou Y. Org Lett, 2020, 22: 2522–2526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21931013, 22271105), the Natural Science Foundation of Fujian Province (2022J02009), the Science and Technology Research Project of Education Department of Hubei Province (B2021133) and the Hubei Key Laboratory of Pollutant Analysis & Reuse Technology (PA190109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuling Song.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Chen, F., Li, Z. et al. Single-atom skeletal editing of 2H-indazoles enabled by difluorocarbene. Sci. China Chem. 66, 1975–1981 (2023). https://doi.org/10.1007/s11426-023-1599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1599-4

Keywords

Navigation