Skip to main content
Log in

A multifunctional and scalable fullerene electron transporting material for efficient inverted perovskite solar cells and modules

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The interfacial properties between charge transporting material and perovskite (PVSK) play critical roles in governing the photovoltaic performances of perovskite solar cells (PVSCs). Herein, we develop a multifunctional fulleropyrrolidine (FMG) as an electron transporting material (ETM), which facilitates the construction of efficient and stable inverted PVSCs and modules. It revealed that the facile and scalable FMG possesses not only excellent electron extraction capabilities, but also multi-groups to simultaneously passivate PVSKs via Lewis acid-base and hydrogen bonding interactions. The coating of FMG onto PVSK interestingly yields a dense and interactive layer with the graded ETM-PVSK heterojunction architecture. As results, FMG-based PVSCs demonstrate a champion efficiency of 23.8%, outperforming 21.0% of PCBM-based devices. FMG could also be utilized to improve photovoltaic performance of large-scale modules. In addition, FMG has successfully elongated the lifetime of the corresponding PVSCs, maintaining 85% of the initial performance after the continuous 60-day one sun equivalent illumination in ambient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim JY, Lee JW, Jung HS, Shin H, Park NG. Chem Rev, 2020, 120: 7867–7918

    CAS  PubMed  Google Scholar 

  2. https://www.nrel.gov/pv/cell-efficiency.html, Accessed January, 23, 2023

  3. Isikgor FH, Zhumagali S, T. Merino LV, De Bastiani M, McCulloch I, De Wolf S. Nat Rev Mater, 2023, 8: 89–108

    CAS  Google Scholar 

  4. Wang T, Deng W, Cao J, Yan F. Adv Energy Mater, 2022, 2201436

  5. Peng J, Kremer F, Walter D, Wu Y, Ji Y, Xiang J, Liu W, Duong T, Shen H, Lu T, Brink F, Zhong D, Li L, Lee Cheong Lem O, Liu Y, Weber KJ, White TP, Catchpole KR. Nature, 2022, 601: 573–578

    CAS  PubMed  Google Scholar 

  6. Du M, Zhao S, Duan L, Cao Y, Wang H, Sun Y, Wang L, Zhu X, Feng J, Liu L, Jiang X, Dong Q, Shi Y, Wang K, Liu SF. Joule, 2022, 6: 1931–1943

    CAS  Google Scholar 

  7. Liu H, Yan K, Rao J, Chen Z, Niu B, Huang Y, Ju H, Yan B, Yao J, Zhu H, Chen H, Li CZ. ACS Appl Mater Interfaces, 2022, 14: 6794–6800

    CAS  PubMed  Google Scholar 

  8. Boyd CC, Shallcross RC, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf EJ, Werner J, Raiford JA, de Paula C, Palmstrom AF, Yu ZJ, Berry JJ, Bent SF, Holman ZC, Luther JM, Ratcliff EL, Armstrong NR, McGehee MD. Joule, 2020, 4: 1759–1775

    CAS  Google Scholar 

  9. Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J. Energy Environ Sci, 2016, 9: 1752–1759

    CAS  Google Scholar 

  10. Jain SM, Qiu Z, Häggman L, Mirmohades M, Johansson MB, Edvinsson T, Boschloo G. Energy Environ Sci, 2016, 9: 3770–3782

    CAS  Google Scholar 

  11. Niu B, Wu H, Yin J, Wang B, Wu G, Kong X, Yan B, Yao J, Li CZ, Chen H. ACS Energy Lett, 2021, 6: 3443–3449

    CAS  Google Scholar 

  12. Meggiolaro D, Motti SG, Mosconi E, Barker AJ, Ball J, Andrea Riccardo Perini C, Deschler F, Petrozza A, De Angelis F. Energy Environ Sci, 2018, 11: 702–713

    CAS  Google Scholar 

  13. Kerner RA, Xu Z, Larson BW, Rand BP. Joule, 2021, 5: 2273–2295

    CAS  Google Scholar 

  14. Xu X, Wang M. Sci China Chem, 2017, 60: 396–404

    CAS  Google Scholar 

  15. Yuan Y, Huang J. Acc Chem Res, 2016, 49: 286–293

    CAS  PubMed  Google Scholar 

  16. Yan X, Fan W, Cheng F, Sun H, Xu C, Wang L, Kang Z, Zhang Y. Nano Today, 2022, 44: 101503

    CAS  Google Scholar 

  17. Yan K, Chen J, Ju H, Ding F, Chen H, Li CZ. J Mater Chem A, 2018, 6: 15495–15503

    CAS  Google Scholar 

  18. Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784

    CAS  PubMed  Google Scholar 

  19. Xu J, Buin A, Ip AH, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell JJ, Kanjanaboos P, Sun JP, Lan X, Quan LN, Kim DH, Hill IG, Maksymovych P, Sargent EH. Nat Commun, 2015, 6: 7081

    CAS  PubMed  Google Scholar 

  20. Lin Y, Shen L, Dai J, Deng Y, Wu Y, Bai Y, Zheng X, Wang J, Fang Y, Wei H, Ma W, Zeng XC, Zhan X, Huang J. Adv Mater, 2017, 29: 1604545

    Google Scholar 

  21. Niu T, Lu J, Munir R, Li J, Barrit D, Zhang X, Hu H, Yang Z, Amassian A, Zhao K, Liu SF. Adv Mater, 2018, 30: 1706576

    Google Scholar 

  22. Shao S, Abdu-Aguye M, Qiu L, Lai LH, Liu J, Adjokatse S, Jahani F, Kamminga ME, ten Brink GH, Palstra TTM, Kooi BJ, Hummelen JC, Antonietta Loi M. Energy Environ Sci, 2016, 9: 2444–2452

    CAS  Google Scholar 

  23. Xing Y, Sun C, Yip HL, Bazan GC, Huang F, Cao Y. Nano Energy, 2016, 26: 7–15

    CAS  Google Scholar 

  24. Kan C, Tang Z, Yao Y, Hang P, Li B, Wang Y, Sun X, Lei M, Yang D, Yu X. ACS Energy Lett, 2021, 6: 3864–3872

    CAS  Google Scholar 

  25. Tan S, Huang T, Yavuz I, Wang R, Yoon TW, Xu M, Xing Q, Park K, Lee DK, Chen CH, Zheng R, Yoon T, Zhao Y, Wang HC, Meng D, Xue J, Song YJ, Pan X, Park NG, Lee JW, Yang Y. Nature, 2022, 605: 268–273

    CAS  PubMed  Google Scholar 

  26. Shao JY, Li D, Shi J, Ma C, Wang Y, Liu X, Jiang X, Hao M, Zhang L, Liu C, Jiang Y, Wang Z, Zhong YW, Liu SF, Mai Y, Liu Y, Zhao Y, Ning Z, Wang L, Xu B, Meng L, Bian Z, Ge Z, Zhan X, You J, Li Y, Meng Q. Sci China Chem, 2022, 66: 10–64

    Google Scholar 

  27. Warby J, Zu F, Zeiske S, Gutierrez-Partida E, Frohloff L, Kahmann S, Frohna K, Mosconi E, Radicchi E, Lang F, Shah S, Peña-Camargo F, Hempel H, Unold T, Koch N, Armin A, De Angelis F, Stranks SD, Neher D, Stolterfoht M. Adv Energy Mater, 2022, 12: 2103567

    CAS  Google Scholar 

  28. Huang C, Fu W, Li CZ, Zhang Z, Qiu W, Shi M, Heremans P, Jen AKY, Chen H. J Am Chem Soc, 2016, 138: 2528–2531

    CAS  PubMed  Google Scholar 

  29. Chen H, Fu W, Huang C, Zhang Z, Li S, Ding F, Shi M, Li CZ, Jen AKY, Chen H. Adv Energy Mater, 2017, 7: 1700012

    Google Scholar 

  30. Zhang Z, Fu W, Ding H, Ju HX, Yan K, Zhang X, Ding F, Li CZ, Chen H. Adv Mater Interfaces, 2018, 5: 1800090

    Google Scholar 

  31. Huang Y, Yan K, Niu B, Chen Z, Gu E, Liu H, Yan B, Yao J, Zhu H, Chen H, Li CZ. Energy Environ Sci, 2023, 16: 557–564

    CAS  Google Scholar 

  32. Li Z, Li B, Wu X, Sheppard SA, Zhang S, Gao D, Long NJ, Zhu Z. Science, 2022, 376: 416–420

    CAS  PubMed  Google Scholar 

  33. Hu S, Otsuka K, Murdey R, Nakamura T, Truong MA, Yamada T, Handa T, Matsuda K, Nakano K, Sato A, Marumoto K, Tajima K, Kanemitsu Y, Wakamiya A. Energy Environ Sci, 2022, 15: 2096–2107

    CAS  Google Scholar 

  34. Huang Y, Yuan Z, Yang J, Yin S, Liang A, Xie G, Feng C, Zhou Z, Xue Q, Pan Y, Huang F, Chen Y. Sci China Chem, 2023, 66: 449–458

    CAS  Google Scholar 

  35. Li CZ, Yip HL, Jen AKY. J Mater Chem, 2012, 22: 4161–4177

    CAS  Google Scholar 

  36. Yang S, Fu W, Zhang Z, Chen H, Li CZ. J Mater Chem A, 2017, 5: 11462–11482

    CAS  Google Scholar 

  37. Zhang K, Yu H, Liu X, Dong Q, Wang Z, Wang Y, Chen N, Zhou Y, Song B. Sci China Chem, 2016, 60: 144–150

    Google Scholar 

  38. Zheng S, Wang G, Liu T, Lou L, Xiao S, Yang S. Sci China Chem, 2019, 62: 800–809

    CAS  Google Scholar 

  39. Huang HH, Tsai H, Raja R, Lin SL, Ghosh D, Hou CH, Shyue JJ, Tretiak S, Chen W, Lin KF, Nie W, Wang L. ACS Energy Lett, 2021, 6: 3376–3385

    CAS  Google Scholar 

  40. Li Y, Zhao Y, Chen Q, Yang YM, Liu Y, Hong Z, Liu Z, Hsieh YT, Meng L, Li Y, Yang Y. J Am Chem Soc, 2015, 137: 15540–15547

    CAS  PubMed  Google Scholar 

  41. Kim K, Wu Z, Han J, Ma Y, Lee S, Jung S, Lee J, Woo HY, Jeon I. Adv Energy Mater, 2022, 12: 2200877

    CAS  Google Scholar 

  42. Sun X, Ji LY, Chen WW, Guo X, Wang HH, Lei M, Wang Q, Li YF. J Mater Chem A, 2017, 5: 20720–20728

    CAS  Google Scholar 

  43. Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL. J Org Chem, 1995, 60: 532–538

    CAS  Google Scholar 

  44. Li CZ, Liang PW, Sulas DB, Nguyen PD, Li X, Ginger DS, Schlenker CW, Jen AKY. Mater Horiz, 2015, 2: 414–419

    CAS  Google Scholar 

  45. Huang J, Yu X, Xie J, Li CZ, Zhang Y, Xu D, Tang Z, Cui C, Yang D. ACS Appl Mater Interfaces, 2016, 8: 34612–34619

    CAS  PubMed  Google Scholar 

  46. Rajagopal A, Liang PW, Chueh CC, Yang Z, Jen AKY. ACS Energy Lett, 2017, 2: 2531–2539

    CAS  Google Scholar 

  47. Yan K, Li C. Macromol Chem Phys, 2019, 220: 1900084

    Google Scholar 

  48. Li CZ, Chueh CC, Yip HL, Zou J, Chen WC, Jen AKY. J Mater Chem, 2012, 22: 14976

    CAS  Google Scholar 

  49. Yan K, Liu ZX, Li X, Chen J, Chen H, Li CZ. Org Chem Front, 2018, 5: 2845–2851

    CAS  Google Scholar 

  50. Kaviyarasu K, Sajan D, Selvakumar MS, Augustine Thomas S, Prem Anand D. J Phys Chem Solids, 2012, 73: 1396–1400

    CAS  Google Scholar 

  51. Li Y, Liu L, Zheng C, Liu Z, Chen L, Yuan N, Ding J, Wang D, Liu SF. Adv Energy Mater, 2023, 13: 2203190

    CAS  Google Scholar 

  52. Hu J, Kerner RA, Pelczer I, Rand BP, Schwartz J. ACS Energy Lett, 2021, 6: 2262–2267

    CAS  Google Scholar 

  53. Liang J, Hu X, Wang C, Liang C, Chen C, Xiao M, Li J, Tao C, Xing G, Yu R, Ke W, Fang G. Joule, 2022, 6: 816–833

    CAS  Google Scholar 

  54. Deng Y, Xiao Z, Huang J. Adv Energy Mater, 2015, 5: 1500721

    Google Scholar 

  55. Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J. Nat Mater, 2015, 14: 193–198

    CAS  PubMed  Google Scholar 

  56. van Reenen S, Kemerink M, Snaith HJ. J Phys Chem Lett, 2015, 6: 3808–3814

    CAS  PubMed  Google Scholar 

  57. Lee H, Lee C. Adv Energy Mater, 2018, 8: 1702197

    Google Scholar 

  58. Bai Y, Huang Z, Zhang X, Lu J, Niu X, He Z, Zhu C, Xiao M, Song Q, Wei X, Wang C, Cui Z, Dou J, Chen Y, Pei F, Zai H, Wang W, Song T, An P, Zhang J, Dong J, Li Y, Shi J, Jin H, Chen P, Sun Y, Li Y, Chen H, Wei Z, Zhou H, Chen Q. Science, 2022, 378: 747–754

    CAS  PubMed  Google Scholar 

  59. Chiang CH, Wu CG. Nat Photon, 2016, 10: 196–200

    CAS  Google Scholar 

  60. Wu Y, Yang X, Chen W, Yue Y, Cai M, Xie F, Bi E, Islam A, Han L. Nat Energy, 2016, 1: 16148

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22125901, 51961145301), the National Key Research and Development Program of China (2019YFA0705900) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Zhi Li.

Ethics declarations

Conflict of interest Authors have no competing interests, except for BY and JY have ownership interests of Hangzhou Microquanta Semiconductor Co. LTD.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1596_MOESM1_ESM.docx

A multifunctional and scalable fullerene electron transporting material for efficient inverted perovskite solar cells and modules

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Shen, Z., Niu, B. et al. A multifunctional and scalable fullerene electron transporting material for efficient inverted perovskite solar cells and modules. Sci. China Chem. 66, 1795–1803 (2023). https://doi.org/10.1007/s11426-023-1596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1596-9

Keywords

Navigation