Skip to main content
Log in

C-H alkylation of pyridines with olefins catalyzed by imidazolin-2-iminato-ligated rare-earth alkyl complexes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An array of rare-earth bis(aminobenzyl) complexes supported by imidazolin-2-iminato ligands were synthesized and structurally characterized. These complexes showed high activity towards ortho-Csp2–H alkylation of 2-alkylpyridines and benzylic Csp3–H alkylation of 2,6-dialkylpyridines with alkenes. A wide range of alkyl or aryl substituted olefin substrates are compatible, providing an atom-economical route to linear or branched alkylated pyridine derivatives in moderate to high yields (45 examples, up to 99% yield). The primary study suggested that the asymmetric version of Csp3–H alkylation of 2,4,6-collidine with allylbenzene was feasible with chiral imidazolin-2-iminato-ligated scandium(III) complexes, and good yield with moderate enantioselectivity was obtained (84% yield, 84:16 er). Mechanistic investigations including kinetic isotope effect (KIE) experiments and density functional theory (DFT) calculations shed light on the catalytic cycle and the origin of enantiocontrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. For representative books and reviews, see: Watson PL, Parshall GW. Acc Chem Res, 1985, 18: 51–56

    CAS  Google Scholar 

  2. Molander GA, Romero JAC. Chem Rev, 2002, 102: 2161–2186

    CAS  PubMed  Google Scholar 

  3. Hou Z, Wakatsuki Y. Product Class 12: Organometallic Complexes of Scandium, Yttrium and the Lanthanides. Stuttgart: Thieme, 2002. 849–942

    Google Scholar 

  4. Zeimentz PM, Arndt S, Elvidge BR, Okuda J. Chem Rev, 2006, 106: 2404–2433

    CAS  PubMed  Google Scholar 

  5. Roesky P. Molecular Catalysis of Rare-Earth Elements. Vol. 137. Berlin: Springer-Verlag, 2010

    Google Scholar 

  6. Dicken RD, Motta A, Marks TJ. ACS Catal, 2021, 11: 2715–2734

    CAS  Google Scholar 

  7. Sun Q, Xu X, Xu X. ChemCatChem, 2022, 14: e202201083

    CAS  Google Scholar 

  8. Seth K. Org Chem Front, 2022, 9: 3102–3141

    CAS  Google Scholar 

  9. Cong X, Huang L, Hou Z. Tetrahedron, 2023, 135: 133323

    CAS  Google Scholar 

  10. For selected reviews, see: Marks TJ, Ernst RD. Scandium, Yttrium and the Lanthanides and Actinides. Oxford: Pergamon Press, 1982. 173–270

    Google Scholar 

  11. Schumann H, Meese-Marktscheffel JA, Esser L. Chem Rev, 1995, 95: 865–986

    CAS  Google Scholar 

  12. Evans WJ, Davis BL. Chem Rev, 2002, 102: 2119–2136

    CAS  PubMed  Google Scholar 

  13. Arndt S, Okuda J. Chem Rev, 2002, 102: 1953–1976

    CAS  PubMed  Google Scholar 

  14. Hou Z. Catalytic and Stoichiometric Transformations by Multimetallic Rare Earth Metal Complexes. Weinheim: Wiley-VCH, 2004. 143–162

    Google Scholar 

  15. For selected reviews and examples, see: Nishiura M, Hou Z. Nat Chem, 2010, 2: 257–268

    CAS  PubMed  Google Scholar 

  16. Nishiura M, Hou Z. Bull Chem Soc Jpn, 2010, 83: 595–608

    CAS  Google Scholar 

  17. Cheng JH, Hou ZM. Sci China Chem, 2011, 54: 2032–2037

    CAS  Google Scholar 

  18. Nishiura M, Guo F, Hou Z. Acc Chem Res, 2015, 48: 2209–2220

    CAS  PubMed  Google Scholar 

  19. For selected reviews and xamples, see: Boyle TJ, Ottley LAM. Chem Rev, 2008, 108: 1896–1917

    CAS  PubMed  Google Scholar 

  20. Chang K, del Rosal I, Zheng X, Maron L, Xu X. Dalton Trans, 2021, 50: 7804–7809

    CAS  PubMed  Google Scholar 

  21. For selected examples, see: Zhang L, Nishiura M, Yuki M, Luo Y, Hou Z. Angew Chem Int Ed, 2008, 47: 2642–2645

    CAS  Google Scholar 

  22. For selected reviews, see: Dehnicke K, Greiner A. Angew Chem Int Ed, 2003, 42: 1340–1354

    CAS  Google Scholar 

  23. For selected examples, see: Lu E, Chu J, Chen Y. Acc Chem Res, 2018, 51: 557–566

    CAS  PubMed  Google Scholar 

  24. Lin F, Liu Z, Wang M, Liu B, Li S, Cui D. Angew Chem Int Ed, 2020, 59: 4324–4328

    CAS  Google Scholar 

  25. Xu X, Zheng X, Xu X. ACS Catal, 2021, 11: 14995–15003

    CAS  Google Scholar 

  26. Feng B, Zhang HY, Qin H, Peng Q, Leng X, Chen Y. CCS Chem, 2022, 4: 3309–3318

    CAS  Google Scholar 

  27. Xu X, Sun Q, Xu X. Org Lett, 2022, 24: 3970–3975

    CAS  PubMed  Google Scholar 

  28. For selected reviews and examples, see: Edelmann FT. Angew Chem Int Ed, 1995, 34: 2466–2488

    CAS  Google Scholar 

  29. Kempe R. Angew Chem Int Ed, 2000, 39: 468–493

    CAS  Google Scholar 

  30. Edelmann FT, Freckmann DMM, Schumann H. Chem Rev, 2002, 102: 1851–1896

    CAS  PubMed  Google Scholar 

  31. Piers WE, Emslie DJH. Coord Chem Rev, 2002, 233–234: 131–155

    Google Scholar 

  32. For selected examples, see: Conticello VP, Brard L, Giardello MA, Tsuji Y, Sabat M, Stern CL, Marks TJ. J Am Chem Soc, 1992, 114: 2761–2762

    CAS  Google Scholar 

  33. Hong S, Tian S, Metz MV, Marks TJ. J Am Chem Soc, 2003, 125: 14768–14783

    CAS  PubMed  Google Scholar 

  34. Gribkov DV, Hultzsch KC, Hampel F. J Am Chem Soc, 2006, 128: 3748–3759

    CAS  PubMed  Google Scholar 

  35. Nguyen HN, Lee H, Audörsch S, Reznichenko AL, Nawara-Hultzsch AJ, Schmidt B, Hultzsch KC. Organometallics, 2018, 37: 4358–4379

    CAS  Google Scholar 

  36. Teng HL, Luo Y, Nishiura M, Hou Z. J Am Chem Soc, 2017, 139: 16506–16509

    CAS  PubMed  Google Scholar 

  37. Lou SJ, Mo Z, Nishiura M, Hou Z. J Am Chem Soc, 2020, 142: 1200–1205

    CAS  PubMed  Google Scholar 

  38. Lou SJ, Zhuo Q, Nishiura M, Luo G, Hou Z. J Am Chem Soc, 2021, 143: 2470–2476

    CAS  PubMed  Google Scholar 

  39. Lou SJ, Luo G, Yamaguchi S, An K, Nishiura M, Hou Z. J Am Chem Soc, 2021, 143: 20462–20471

    CAS  PubMed  Google Scholar 

  40. Zhu C, Zhou Y, Yang J, Feng X, Dong S. Org Chem Front, 2023, 10: 1263–1269

    CAS  Google Scholar 

  41. For selected reviews, see: Edelmann FT. Chem Soc Rev, 2012, 41: 7657–7672

    CAS  PubMed  Google Scholar 

  42. Dong S, Feng X, Liu X. Chem Soc Rev, 2018, 47: 8525–8540

    CAS  PubMed  Google Scholar 

  43. Chou HC, Leow D, Tan CH. Chem Asian J, 2019, 14: 3803–3822

    CAS  PubMed  Google Scholar 

  44. Wu X, Tamm M. Coord Chem Rev, 2014, 260: 116–138

    CAS  Google Scholar 

  45. Volbeda J, Jones PG, Tamm M. Inorg Chim Acta, 2014, 422: 158–166

    CAS  Google Scholar 

  46. Trambitas AG, Panda TK, Tamm M. Z Anorg Allg Chem, 2010, 636: 2156–2171

    CAS  Google Scholar 

  47. Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S. Chem Rev, 2018, 118: 9678–9842

    CAS  PubMed  Google Scholar 

  48. Ochiai T, Franz D, Inoue S. Chem Soc Rev, 2016, 45: 6327–6344

    CAS  PubMed  Google Scholar 

  49. Doddi A, Peters M, Tamm M. Chem Rev, 2019, 119: 6994–7112

    CAS  PubMed  Google Scholar 

  50. Revathi S, Raja P, Saha S, Eisen MS, Ghatak T. Chem Commun, 2021, 57: 5483–5502

    CAS  Google Scholar 

  51. Wang N, Feng B, Cui P, Tamm M, Chen Y. Chem —An Asian J, 2023, 18: e202201135

    CAS  Google Scholar 

  52. Sun R, Wang C, Wang BW, Wang ZM, Chen YF, Tamm M, Gao S. Inorg Chem Front, 2023, 10: 485–492

    CAS  Google Scholar 

  53. Wang S, Zhu C, Ning L, Li D, Feng X, Dong S. Chem Sci, 2023, 14: 3132–3139

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Panda TK, Randoll S, Hrib CG, Jones PG, Bannenberg T, Tamm M. Chem Commun, 2007, 5007–5009

  55. Trambitas AG, Panda TK, Jenter J, Roesky PW, Daniliuc C, Hrib CG, Jones PG, Tamm M. Inorg Chem, 2010, 49: 2435–2446

    CAS  PubMed  Google Scholar 

  56. Trambitas AG, Melcher D, Hartenstein L, Roesky PW, Daniliuc C, Jones PG, Tamm M. Inorg Chem, 2012, 51: 6753–6761

    CAS  PubMed  Google Scholar 

  57. Zhao W, Wang B, Dong B, Liu H, Hu Y, Eisen MS, Zhang X. Organometallics, 2020, 39: 3983–3991

    CAS  Google Scholar 

  58. For representative reviews, see: Holliday BJ, Mirkin CA. Angew Chem Int Ed, 2001, 40: 2022–2043

    CAS  Google Scholar 

  59. Bagley M, Glover C, Merritt E. Synlett, 2007, 2007: 2459–2482

    Google Scholar 

  60. Michael JP. Nat Prod Rep, 2007, 24: 223–246

    CAS  PubMed  Google Scholar 

  61. Arena C, Arico G. Curr Org Chem, 2010, 14: 546–580

    CAS  Google Scholar 

  62. Some representative reviews for C-H functionality of pyridines, see: Stephens DE, Larionov OV. Tetrahedron, 2015, 71: 8683–8716

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Murakami K, Yamada S, Kaneda T, Itami K. Chem Rev, 2017, 117: 9302–9332

    CAS  PubMed  Google Scholar 

  64. For selected examples for ortho-functionalization of pyridines towards olefins by transition metals: Grigg R, Savic V. Tetrahedron Lett, 1997, 38: 5737–5740

  65. Lewis JC, Bergman RG, Ellman JA. J Am Chem Soc, 2007, 129: 5332–5333

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Andou T, Saga Y, Komai H, Matsunaga S, Kanai M. Angew Chem Int Ed, 2013, 52: 3213–3216

    CAS  Google Scholar 

  67. Sun Q, Chen P, Wang Y, Luo Y, Yuan D, Yao Y. Inorg Chem, 2018, 57: 11788–11800

    CAS  PubMed  Google Scholar 

  68. Li JF, Pan D, Wang HR, Zhang T, Li Y, Huang G, Ye M. J Am Chem Soc, 2022, 144: 18810–18816

    CAS  PubMed  Google Scholar 

  69. Guan BT, Hou Z. J Am Chem Soc, 2011, 133: 18086–18089

    CAS  PubMed  Google Scholar 

  70. Song G, O WWN, Hou Z. J Am Chem Soc, 2014, 136: 12209–12212

    CAS  PubMed  Google Scholar 

  71. Selikhov AN, Boronin EN, Cherkasov AV, Fukin GK, Shavyrin AS, Trifonov AA. Adv Synth Catal, 2020, 362: 5432–5443

    CAS  Google Scholar 

  72. Ye P, Shao Y, Zhang F, Zou J, Ye X, Chen J. Adv Synth Catal, 2020, 362: 851–857

    CAS  Google Scholar 

  73. Lin H, Li Y, Wang J, Zhang M, Jiang T, Li J, Chen Y. Appl Organomet Chem, 2021, 35: e6345

    CAS  Google Scholar 

  74. For selected examples for benzylic C-H alkylation of alkyl pyridines towards olefins, see: Guan BT, Wang B, Nishiura M, Hou Z. Angew Chem Int Ed, 2013, 52: 4418–4421

    CAS  Google Scholar 

  75. Luo Y, Teng HL, Nishiura M, Hou Z. Angew Chem Int Ed, 2017, 56: 9207–9210

    CAS  Google Scholar 

  76. Sun Q, Xie P, Yuan D, Xia Y, Yao Y. Chem Commun, 2017, 53: 7401–7404

    CAS  Google Scholar 

  77. Zhai DD, Zhang XY, Liu YF, Zheng L, Guan BT. Angew Chem Int Ed, 2018, 57: 1650–1653

    CAS  Google Scholar 

  78. Zheng X, del Rosal I, Xu X, Yao Y, Maron L, Xu X. Inorg Chem, 2021, 60: 5114–5121

    CAS  PubMed  Google Scholar 

  79. Takimoto M, Liu M, Nishiura M, Hou Z. ACS Catal, 2022, 12: 13792–13804

    CAS  Google Scholar 

  80. Zhou W, Cong X, Nishiura M, Hou Z. Chem Commun, 2022, 58: 7257–7260

    CAS  Google Scholar 

  81. Li X, Nishiura M, Mori K, Mashiko T, Hou Z. Chem Commun, 2007, 4137–4139

  82. For a detailed comparison with Cp-derived rara-earth complex and related rare-earth alkyl complexes supported by imidazolin-2-iminato ligands, see SI for more details. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

  83. Diesel J, Finogenova AM, Cramer N. J Am Chem Soc, 2018, 140: 4489–4493

    CAS  PubMed  Google Scholar 

  84. Cai Y, Yang XT, Zhang SQ, Li F, Li YQ, Ruan LX, Hong X, Shi SL. Angew Chem Int Ed, 2018, 57: 1376–1380

    CAS  Google Scholar 

  85. Wang S, Zhang C, Li D, Zhou Y, Su Z, Feng X, Dong S. Sci China Chem, 2023, 66: 147–154

    CAS  Google Scholar 

  86. Lu E, Li Y, Chen Y. Chem Commun, 2010, 46: 4469–4471

    CAS  Google Scholar 

  87. Nako AE, Oyamada J, Nishiura M, Hou Z. Chem Sci, 2016, 7: 6429–6434

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu F, Luo G, Hou Z, Luo Y. Organometallics, 2017, 36: 1557–1565

    CAS  Google Scholar 

  89. Chen Y, Song D, Li J, Hu X, Bi X, Jiang T, Hou Z. Chem-CatChem, 2018, 10: 159–164

    CAS  Google Scholar 

  90. Tang B, Hu X, Liu C, Jiang T, Alam F, Chen Y. ACS Catal, 2019, 9: 599–604

    CAS  Google Scholar 

  91. Zhou G, Luo G, Kang X, Hou Z, Luo Y. Organometallics, 2018, 37: 2741–2748

    CAS  Google Scholar 

  92. Zhou Y, Wu P, Cao F, Shi L, Zhang N, Xue Z, Luo G. RSC Adv, 2022, 12: 13593–13599

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFA1504301), the National Natural Science Foundation of China (92056107, 22271199, 92256303, 21890723), and Sichuan University (2020SCUNL204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunxi Dong.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Ning, L., Luo, Q. et al. C-H alkylation of pyridines with olefins catalyzed by imidazolin-2-iminato-ligated rare-earth alkyl complexes. Sci. China Chem. 66, 1804–1813 (2023). https://doi.org/10.1007/s11426-023-1588-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1588-8

Keywords

Navigation