Skip to main content
Log in

Coordination cage with structural “defects” and open metal sites catalyzes selective oxidation of primary alcohols

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Coordination cages with intrinsic enzyme-like activity are a class of promising catalysts for improving the efficiency of organic reactions. We present herein a viable strategy to conveniently construct multimetallic active sites into a coordination cage via self-assembly of a pre-formed sulfonylcalix[4]arene-based tetranuclear copper(II) precursor and an amino-functionalized dicarboxylate linker. The cage exhibits a “defective”, partially open cylindrical structure and features coordinatively labile dimetallic Cu(II) sites. Modulated by this unique inner cavity environment, promising catalytic activity toward selective oxidation of primary alcohols to carboxylic acids at room temperature is achieved. Mechanistic studies reveal that the coordinatively labile dimetallic Cu(II) sites can efficiently capture and activate the substrate and oxidant to catalyze the reaction, while the confined nano-cavity environment modulates substrate binding and enhances the catalytic turnover. This study provides a new approach to designing biomimetic multifunctional coordination cages and environmentally friendly supramolecular catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DHB. Chem Rev, 2006, 106: 2943–2989

    CAS  PubMed  Google Scholar 

  2. Gabriel T, Fernández M. Oxidation of Primary Alcohols to Carboxylic Acids. Basic Reactions in Organic Synthesis. New York: Springer, 2006

    Google Scholar 

  3. Rafiee M, Konz ZM, Graaf MD, Koolman HF, Stahl SS. ACS Catal, 2018, 8: 6738–6744

    CAS  Google Scholar 

  4. Cherepakhin V, Williams TJ. Synthesis, 2020, 53: 1023–1034

    Google Scholar 

  5. Greco R, Tiburcio-Fortes E, Fernandez A, Marini C, Vidal-Moya A, Oliver-Meseguer J, Armentano D, Pardo E, Ferrando-Soria J, Leyva-Pérez A. Chem Eur J, 2022, 28: e202103781

    CAS  PubMed  Google Scholar 

  6. Nandi J, Hutcheson EL, Leadbeater NE. Tetrahedron Lett, 2021, 63: 152632

    CAS  Google Scholar 

  7. Zhou J, Huang-Fu X, Huang YY, Cao CN, Han J, Zhao XL, Chen XD. Inorg Chem, 2020, 59: 254–263

    CAS  PubMed  Google Scholar 

  8. Lehn JM. Supramolecular Chemistry. Weinheim: VCH Publishing, 1995

    Google Scholar 

  9. Marchetti L, Levine M. ACS Catal, 2011, 1: 1090–1118

    CAS  Google Scholar 

  10. Ferrand Y, Crump MP, Davis AP. Science, 2007, 318: 619–622

    CAS  PubMed  Google Scholar 

  11. Hooley RJ. Nat Chem, 2016, 8: 202–204

    CAS  PubMed  Google Scholar 

  12. Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM. Chem Soc Rev, 2014, 43: 1734–1787

    CAS  PubMed  Google Scholar 

  13. Castilla AM, Ramsay WJ, Nitschke JR. Acc Chem Res, 2014, 47: 2063–2073

    CAS  PubMed  Google Scholar 

  14. Stang PJ, Cao DH. J Am Chem Soc, 1994, 116: 4981–4982

    CAS  Google Scholar 

  15. Takezawa H, Kanda T, Nanjo H, Fujita M. J Am Chem Soc, 2019, 141: 5112–5115

    CAS  PubMed  Google Scholar 

  16. Yoshizawa M, Tamura M, Fujita M. Science, 2006, 312: 251–254

    CAS  PubMed  Google Scholar 

  17. Holloway LR, Bogie PM, Lyon Y, Ngai C, Miller TF, Julian RR, Hooley RJ. J Am Chem Soc, 2018, 140: 8078–8081

    CAS  PubMed  Google Scholar 

  18. Guo J, Xu YW, Li K, Xiao LM, Chen S, Wu K, Chen XD, Fan YZ, Liu JM, Su CY. Angew Chem Int Ed, 2017, 56: 3852–3856

    CAS  Google Scholar 

  19. Wang QQ, Gonell S, Leenders SHAM, Dürr M, Ivanović-Burmazović I, Reek JNH. Nat Chem, 2016, 8: 225–230

    CAS  PubMed  Google Scholar 

  20. Cullen W, Misuraca MC, Hunter CA, Williams NH, Ward MD. Nat Chem, 2016, 8: 231–236

    CAS  PubMed  Google Scholar 

  21. Ueda Y, Ito H, Fujita D, Fujita M. J Am Chem Soc, 2017, 139: 6090–6093

    CAS  PubMed  Google Scholar 

  22. Cai G, Jiang HL. Angew Chem Int Ed, 2017, 56: 563–567

    CAS  Google Scholar 

  23. Kökçam-Demir Ü, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C. Chem Soc Rev, 2020, 49: 2751–2798

    PubMed  Google Scholar 

  24. Tang X, Chu D, Gong W, Cui Y, Liu Y. Angew Chem Int Ed, 2021, 60: 9099–9105

    CAS  Google Scholar 

  25. Li RJ, Tessarolo J, Lee H, Clever GH. J Am Chem Soc, 2021, 143: 3865–3873

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen B, Holstein JJ, Horiuchi S, Hiller WG, Clever GH. J Am Chem Soc, 2019, 141: 8907–8913

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dai FR, Wang Z. J Am Chem Soc, 2012, 134: 8002–8005

    CAS  PubMed  Google Scholar 

  28. He C, Sheng T-P, Dai F-R, Chen Z-N. Chinese J Struct Chem, 2020, 39: 2077–2084

    CAS  Google Scholar 

  29. Bi Y, Du S, Liao W. Coord Chem Rev, 2014, 276: 61–72

    CAS  Google Scholar 

  30. Sheng TP, He C, Wang Z, Zheng GZ, Dai FR, Chen ZN. CCS Chem, 2022, 4: 1098–1107

    CAS  Google Scholar 

  31. Chen X, Li C, Cao X, Jia X, Chen X, Wang Z, Xu W, Dai F, Zhang S. Theranostics, 2022, 12: 3251–3272

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiao Y, Zhang L, Li J, Lin W, Wang Z. Angew Chem Int Ed, 2016, 55: 12778–12782

    CAS  Google Scholar 

  33. Dai FR, Qiao Y, Wang Z. Inorg Chem Front, 2016, 3: 243–249

    CAS  Google Scholar 

  34. Jiao J, Li Z, Qiao Z, Li X, Liu Y, Dong J, Jiang J, Cui Y. Nat Commun, 2018, 9: 4423

    PubMed  PubMed Central  Google Scholar 

  35. Fang Y, Xiao Z, Li J, Lollar C, Liu L, Lian X, Yuan S, Banerjee S, Zhang P, Zhou HC. Angew Chem Int Ed, 2018, 57: 5283–5287

    CAS  Google Scholar 

  36. Weiss JN. FASEB J, 1997, 11: 835–841

    CAS  PubMed  Google Scholar 

  37. Hill AV. J Physiol, 1910, 40: iv–vii

    Google Scholar 

  38. Bhuvaneswari N, Annamalai KP, Dai FR, Chen ZN. J Mater Chem A, 2017, 5: 23559–23565

    CAS  Google Scholar 

  39. Bhuvaneswari N, Dai FR, Chen ZN. Chem Eur J, 2018, 24: 6580–6585

    CAS  PubMed  Google Scholar 

  40. Sheldon RA, Arends IWCE, ten Brink GJ, Dijksman A. Acc Chem Res, 2002, 35: 774–781

    CAS  PubMed  Google Scholar 

  41. Marais L, Swarts AJ. Catalysts, 2019, 9: 395

    Google Scholar 

  42. Adamo C, Barone V. J Chem Phys, 1999, 110: 6158–6170

    CAS  Google Scholar 

  43. Grimme S, Ehrlich S, Goerigk L. J Comput Chem, 2011, 32: 1456–1465

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21673239, 92061202, U22A20387), the Fujian Science and Technology Project (2020L3022), and the Science and Technology Service Network Initiative (STS) Foundation of Fujian Provincial Department of Science and Technology (2021T3004). Z.W. and P.J. acknowledge the financial support provided by the National Science Foundation (CHE-1800354) and the South Dakota Governor’s Office of Economic Development through the Center for Fluorinated Functional Materials (CFFM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Rong Dai, Shuping Huang, Zhenqiang Wang or Zhong-Ning Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, TP., Wei, Y., Jampani, P. et al. Coordination cage with structural “defects” and open metal sites catalyzes selective oxidation of primary alcohols. Sci. China Chem. 66, 1714–1721 (2023). https://doi.org/10.1007/s11426-023-1584-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1584-y

Keywords

Navigation