Skip to main content
Log in

Li–air batteries: air stability of lithium metal anodes

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Aprotic rechargeable lithium–air batteries (LABs) with an ultrahigh theoretical energy density (3,500 Wh kg −1) are known as the ‘holy grail’ of energy storage systems and could replace Li-ion batteries as the next-generation high-capacity batteries if a practical device could be realized. However, only a few researches focus on the battery performance and reactions in the ambient air environment, which is a major obstacle to promote the practical application of LABs. Here, we have summarized the recent research progress on LABs, especially with respect to the Li metal anodes. The chemical and electrochemical deteriorations of the Li metal anode under the ambient air are discussed in detail, and the parasitic reactions involving the cathode and electrolyte during the charge–discharge processes are included. We also provide stability perspectives on protecting the Li metal anodes and propose design principles for realizing high-performance LABs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong YS, Zhao CZ, Xiao Y, Xu R, Xu JJ, Huang JQ, Zhang Q, Yu X, Li H. Batteries Supercaps, 2019, 2: 638–658

    Article  CAS  Google Scholar 

  2. Aurbach D, McCloskey BD, Nazar LF, Bruce PG. Nat Energy, 2016, 1: 16128

    Article  CAS  Google Scholar 

  3. Kwak WJ, Rosy WJ, Sharon D, Xia C, Kim H, Johnson LR, Bruce PG, Nazar LF, Sun YK, Frimer AA, Noked M, Freunberger SA, Aurbach D. Chem Rev, 2020, 120: 6626–6683

    Article  CAS  PubMed  Google Scholar 

  4. Lin D, Liu Y, Cui Y. Nat Nanotech, 2017, 12: 194–206

    Article  CAS  Google Scholar 

  5. Meng YS. Chem Rev, 2020, 120: 6327

    Article  CAS  PubMed  Google Scholar 

  6. Qiao Y, Wang Q, Mu X, Deng H, He P, Yu J, Zhou H. Joule, 2019, 3: 2986–3001

    Article  CAS  Google Scholar 

  7. Abraham KM, Jiang Z. J Electrochem Soc, 1996, 143: 1–5

    Article  CAS  Google Scholar 

  8. Peng Z, Freunberger SA, Chen Y, Bruce PG. Science, 2012, 337: 563–566

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Pan S, Guo Y, Wu S, Yang QH. Energy Storage Mater, 2022, 50: 564–571

    Article  Google Scholar 

  10. Zhang X, Xie Z, Zhou Z. ChemElectroChem, 2019, 6: 1969–1977

    Article  CAS  Google Scholar 

  11. Temprano I, Liu T, Petrucco E, Ellison JHJ, Kim G, Jónsson E, Grey CP. Joule, 2020, 4: 2501–2520

    Article  CAS  Google Scholar 

  12. Vivek JP, Berry N, Papageorgiou G, Nichols RJ, Hardwick LJ. J Am Chem Soc, 2016, 138: 3745–3751

    Article  CAS  PubMed  Google Scholar 

  13. Qiao Y, Wu S, Yi J, Sun Y, Guo S, Yang S, He P, Zhou H. Angew Chem Int Ed, 2017, 56: 4960–4964

    Article  CAS  Google Scholar 

  14. Mahne N, Schafzahl B, Leypold C, Leypold M, Grumm S, Leitgeb A, Strohmeier GA, Wilkening M, Fontaine O, Kramer D, Slugovc C, Borisov SM, Freunberger SA. Nat Energy, 2017, 2: 17036

    Article  CAS  Google Scholar 

  15. Kwak WJ, Kim H, Petit YK, Leypold C, Nguyen TT, Mahne N, Redfern P, Curtiss LA, Jung HG, Borisov SM, Freunberger SA, Sun YK. Nat Commun, 2019, 10: 1380–1387

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reeve ZEM, Franko CJ, Harris KJ, Yadegari H, Sun X, Goward GR. J Am Chem Soc, 2017, 139: 595–598

    Article  CAS  PubMed  Google Scholar 

  17. Thotiyl MMO, Freunberger SA, Peng Z, Bruce PG. Am Chem Soc, 2013, 135: 494–500

    Article  Google Scholar 

  18. Hase Y, Uyama T, Nishioka K, Seki J, Morimoto K, Ogihara N, Mukouyama Y, Nakanishi S. J Am Chem Soc, 2022, 144: 1296–1305

    Article  CAS  PubMed  Google Scholar 

  19. McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC. J Phys Chem Lett, 2012, 3: 997–1001

    Article  CAS  PubMed  Google Scholar 

  20. Lv Q, Zhu Z, Ni Y, Wen B, Jiang Z, Fang H, Li F. JAm Chem Soc, 2022, 144: 23239–23246

    Article  CAS  Google Scholar 

  21. Lim HD, Lee B, Zheng Y, Hong J, Kim J, Gwon H, Ko Y, Lee M, Cho K, Kang K. Nat Energy, 2016, 1: 16066

    Article  CAS  Google Scholar 

  22. Lee DJ, Lee H, Kim YJ, Park JK, Kim HT. Adv Mater, 2016, 28: 857–863

    Article  CAS  PubMed  Google Scholar 

  23. Wei X, Xu W, Vijayakumar M, Cosimbescu L, Liu T, Sprenkle V, Wang W. Adv Mater, 2014, 26: 7649–7653

    Article  CAS  PubMed  Google Scholar 

  24. Shui JL, Okasinski JS, Kenesei P, Dobbs HA, Zhao D, Almer JD, Liu DJ. Nat Commun, 2013, 4: 2255–2262

    Article  PubMed  Google Scholar 

  25. Dai A, Li Q, Liu T, Amine K, Lu J. Adv Mater, 2019, 31: 1805602

    Article  Google Scholar 

  26. Aetukuri NB, McCloskey BD, García JM, Krupp LE, Viswanathan V, Luntz AC. Nat Chem, 2015, 7: 50–56

    Article  CAS  PubMed  Google Scholar 

  27. Cho MH, Trottier J, Gagnon C, Hovington P, Clément D, Vijh A, Kim CS, Guerfi A, Black R, Nazar L, Zaghib K. J Power Sources, 2014, 268: 565–574

    Article  CAS  Google Scholar 

  28. Zhang Y, Lv W, Huang Z, Zhou G, Deng Y, Zhang J, Zhang C, Hao B, Qi Q, He YB, Kang F, Yang QH. Sci Bull, 2019, 64: 910–917

    Article  CAS  Google Scholar 

  29. Markowitz MM, Boryta DA. J Chem Eng Data, 1962, 7: 586–591

    Article  CAS  Google Scholar 

  30. Zavadil KR, Armstrong NR. Surf Sci, 1990, 230: 47–60

    Article  CAS  Google Scholar 

  31. Wang K, Ross PN, Kong F, McLarnon F. J Electrochem Soc, 1996, 143: 422–428

    Article  CAS  Google Scholar 

  32. Li Y, Li Y, Sun Y, Butz B, Yan K, Koh AL, Zhao J, Pei A, Cui Y. Nano Lett, 2017, 17: 5171–5178

    Article  CAS  PubMed  Google Scholar 

  33. Etxebarria A, Koch SL, Bondarchuk O, Passerini S, Teobaldi G, Muñoz-Márquez MÁ. Adv Energy Mater, 2020, 10: 2000520

    Article  CAS  Google Scholar 

  34. Wang T, Pan X, Chen J, Chen Y. J Phys Chem Lett, 2012, 12: 4799–4804

    Article  Google Scholar 

  35. Etxebarria A, Yun DJ, Blum M, Ye Y, Sun M, Lee KJ, Su H, Muñoz-Márquez MÁ, Ross PN, Crumlin EJ. ACS Appl Mater Interfaces, 2020, 12: 26607–26613

    Article  CAS  PubMed  Google Scholar 

  36. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Ko-zinsky B, Liedtke R, Ahmed J, Kojic A. J Electrochem Soc, 2011, 159: R1–R30

    Article  Google Scholar 

  37. Wu J, Yuan L, Li Z, Xie X, Huang Y. Mater Horiz, 2020, 7: 2619–2634

    Article  CAS  Google Scholar 

  38. Addison CC, Davies BM. J Chem Soc A, 1969, 1822–1827

  39. Chen K, Huang G, Ma JL, Wang J, Yang DY, Yang XY, Yu Y, Zhang XB. Angew Chem Int Ed, 2020, 59: 16661–16667

    Article  CAS  Google Scholar 

  40. Xu W, Xu K, Viswanathan VV, Towne SA, Hardy JS, Xiao J, Nie Z, Hu D, Wang D, Zhang JG. J Power Sources, 2011, 196: 9631–9639

    Article  CAS  Google Scholar 

  41. Lim HD, Gwon H, Kim H, Kim SW, Yoon T, Choi JW, Oh SM, Kang K. Electrochim Acta, 2013, 90: 63–70

    Article  CAS  Google Scholar 

  42. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG. Nat Chem, 2013, 5: 489–494

    Article  PubMed  Google Scholar 

  43. Gao X, Chen Y, Johnson L, Bruce PG. Nat Mater, 2016, 15: 882–888

    Article  CAS  PubMed  Google Scholar 

  44. Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek J. J Am Chem Soc, 2014, 136: 15054–15064

    Article  CAS  PubMed  Google Scholar 

  45. Leverick G, Tulodziecki M, Tatara R, Bardé F, Shao-Horn Y. Joule, 2019, 3: 1106–1126

    Article  CAS  Google Scholar 

  46. Park JB, Lee SH, Jung HG, Aurbach D, Sun YK. Adv Mater, 2018, 30: 1704162

    Article  Google Scholar 

  47. Ha S, Kim Y, Koo D, Ha KH, Park Y, Kim DM, Son S, Yim T, Lee KT. J Mater Chem A, 2017, 5: 10609–10621

    Article  CAS  Google Scholar 

  48. Liu T, Feng XL, Jin X, Shao MZ, Su YT, Zhang Y, Zhang XB. Angew Chem Int Ed, 2019, 58: 18240–18245

    Article  CAS  Google Scholar 

  49. Li C, Wei J, Qiu K, Wang Y. ACS Appl Mater Interfaces, 2020, 12: 23010–23016

    Article  CAS  PubMed  Google Scholar 

  50. Wang D, Zhang F, He P, Zhou H. Angew Chem Int Ed, 2019, 58: 2355–2359

    Article  CAS  Google Scholar 

  51. Wang C, Guo Z, Zhang S, Chen G, Dong S, Cui G. Energy Storage Mater, 2021, 43: 221–228

    Article  Google Scholar 

  52. Zhu Y, Zhang Y, Das P, Wu ZS. Energy Fuels, 2021, 35: 12902–12920

    Article  CAS  Google Scholar 

  53. Guo Z, Zhang Q, Wang C, Zhang Y, Dong S, Cui G. Adv Funct Mater, 2022, 32: 2108993

    Article  CAS  Google Scholar 

  54. Chen J, Fan X, Li Q, Yang H, Khoshi MR, Xu Y, Hwang S, Chen L, Ji X, Yang C, He H, Wang C, Garfunkel E, Su D, Borodin O, Wang C. Nat Energy, 2020, 5: 386–397

    Article  CAS  Google Scholar 

  55. Kang JH, Lee J, Jung JW, Park J, Jang T, Kim HS, Nam JS, Lim H, Yoon KR, Ryu WH, Kim ID, Byon HR. ACS Nano, 2020, 14: 14549–14578

    Article  CAS  PubMed  Google Scholar 

  56. Li R, Fan Y, Zhao C, Hu A, Zhou B, He M, Chen J, Yan Z, Pan Y, Long J. Small Methods, 2023, 7: 2201177

    Article  CAS  Google Scholar 

  57. Guo Z, Li J, Xia Y, Chen C, Wang F, Tamirat AG, Wang Y, Xia Y, Wang L, Feng S. J Mater Chem A, 2018, 6: 6022–6032

    Article  CAS  Google Scholar 

  58. Guo Z, Li C, Liu J, Wang Y, Xia Y. Angew Chem Int Ed, 2017, 56: 7505–7509

    Article  CAS  Google Scholar 

  59. Ryou MH, Kim SH, Kim SW, Lee SY. Energy Environ Sci, 2022, 15: 2581–2590

    Article  CAS  Google Scholar 

  60. Zhao J, Zhou G, Yan K, Xie J, Li Y, Liao L, Jin Y, Liu K, Hsu PC, Wang J, Cheng HM, Cui Y. Nat Nanotech, 2017, 12: 993–999

    Article  CAS  Google Scholar 

  61. Dong L, Nie L, Liu W. Adv Mater, 2020, 32: 1908494

    Article  CAS  Google Scholar 

  62. Fan H, Li S, Yu Y, Xu H, Jiang M, Huang Y, Li J. Adv Funct Mater, 2021, 31: 2100978

    Article  CAS  Google Scholar 

  63. Xu H, Li S, Zhang C, Chen X, Liu W, Zheng Y, Xie Y, Huang Y, Li J. Energy Environ Sci, 2019, 12: 2991–3000

    Article  CAS  Google Scholar 

  64. Liu B, Zhang JG, Xu W. Joule, 2018, 2: 833–845

    Article  CAS  Google Scholar 

  65. Peled E. J Electrochem Soc, 1979, 126: 2047–2051

    Article  CAS  Google Scholar 

  66. Wang H, Zhu J, Su Y, Gong Z, Yang Y. Sci China Chem, 2021, 64: 879–898

    Article  CAS  Google Scholar 

  67. Huang J, Li F, Wu M, Wang H, Qi S, Jiang G, Li X, Ma J. Sci China Chem, 2022, 65: 840–857

    Article  CAS  Google Scholar 

  68. Aurbach D, Daroux ML, Faguy PW, Yeager E. J Electrochem Soc, 1987, 134: 1611–1620

    Article  CAS  Google Scholar 

  69. Togasaki N, Momma T, Osaka T. J Power Sources, 2014, 261: 23–27

    Article  CAS  Google Scholar 

  70. Qian J, Xu W, Bhattacharya P, Engelhard M, Henderson WA, Zhang Y, Zhang JG. Nano Energy, 2015, 15: 135–144

    Article  CAS  Google Scholar 

  71. Zhao J, Liao L, Shi F, Lei T, Chen G, Pei A, Sun J, Yan K, Zhou G, Xie J, Liu C, Li Y, Liang Z, Bao Z, Cui Y. J Am Chem Soc, 2017, 139: 11550–11558

    Article  CAS  PubMed  Google Scholar 

  72. Yu Y, Huang G, Wang JZ, Li K, Ma JL, Zhang XB. Adv Mater, 2020, 32: 2004157

    Article  CAS  Google Scholar 

  73. Yu Y, Huang G, Du JY, Wang JZ, Wang Y, Wu ZJ, Zhang XB. Energy Environ Sci, 2020, 13: 3075–3081

    Article  CAS  Google Scholar 

  74. Liao K, Wu S, Mu X, Lu Q, Han M, He P, Shao Z, Zhou H. Adv Mater, 2018, 30: 1705711

    Article  Google Scholar 

  75. Yu Y, Yin YB, Ma JL, Chang ZW, Sun T, Zhu YH, Yang XY, Liu T, Zhang XB. Energy Storage Mater, 2019, 18: 382–388

    Article  Google Scholar 

  76. Li NW, Shi Y, Yin YX, Zeng XX, Li JY, Li CJ, Wan LJ, Wen R, Guo YG. Angew Chem Int Ed, 2018, 57: 1505–1509

    Article  CAS  Google Scholar 

  77. Wang G, Chen C, Chen Y, Kang X, Yang C, Wang F, Liu Y, Xiong X. Angew Chem Int Ed, 2020, 59: 2055–2060

    Article  CAS  Google Scholar 

  78. Liu Y, Tzeng YK, Lin D, Pei A, Lu H, Melosh NA, Shen ZX, Chu S, Cui Y. Joule, 2018, 2: 1595–1609

    Article  CAS  Google Scholar 

  79. Kazyak E, Wood KN, Dasgupta NP. Chem Mater, 2015, 27: 6457–6462

    Article  CAS  Google Scholar 

  80. Su M, Huang G, Wang S, Wang Y, Wang H. Sci China Chem, 2021, 64: 1131–1156

    Article  CAS  Google Scholar 

  81. Zhao Y, Zheng K, Sun X. Joule, 2018, 2: 2583–2604

    Article  CAS  Google Scholar 

  82. Wang W, Yuan Y, Wang J, Zhang Y, Liao C, Mu X, Sheng H, Kan Y, Song L, Hu Y. ACS Appl Energy Mater, 2019, 2: 4167–4174

    Article  CAS  Google Scholar 

  83. Lei J, Gao Z, Tang L, Zhong L, Li J, Zhang Y, Liu T. Adv Sci, 2022, 9: 2103760

    Article  CAS  Google Scholar 

  84. Vivek JP, Meddings N, Garcia-Araez N. ACS Appl Mater Interfaces, 2022, 14: 633–646

    Article  CAS  PubMed  Google Scholar 

  85. Chi X, Li M, Di J, Bai P, Song L, Wang X, Li F, Liang S, Xu J, Yu J. Nature, 2021, 592: 551–557

    Article  CAS  PubMed  Google Scholar 

  86. Wang S, Wang J, Liu J, Song H, Liu Y, Wang P, He P, Xu J, Zhou H. J Mater Chem A, 2018, 6: 21248–21254

    Article  CAS  Google Scholar 

  87. Yu Y, Zhang XB. Matter, 2019, 1: 881–892

    Article  Google Scholar 

  88. Zhang XP, Wen ZY, Zhang T. J Mater Chem A, 2018, 6: 12945–12949

    Article  CAS  Google Scholar 

  89. Jang IC, Ida S, Ishihara T. J Electrochem Soc, 2014, 161: A821–A826

    Article  CAS  Google Scholar 

  90. Balaish M, Peled E, Golodnitsky D, Ein-Eli Y. Angew Chem Int Ed, 2014, 54: 436–440

    Article  Google Scholar 

  91. Soga S, Bai F, Zhang T, Kakimoto K, Mori D, Taminato S, Takeda Y, Yamamoto O, Imanishi N. J Electrochem Soc, 2020, 167: 090522

    Article  CAS  Google Scholar 

  92. Ruan Y, Sun J, Song S, Yu L, Chen B, Li W, Qin X. Electrochem Commun, 2018, 96: 93–97

    Article  CAS  Google Scholar 

  93. Amici J, Francia C, Zeng J, Bodoardo S, Penazzi N. J Appl Electrochem, 2016, 46: 617–626

    Article  CAS  Google Scholar 

  94. Xie M, Huang Z, Lin X, Li Y, Huang Z, Yuan L, Shen Y, Huang Y. Energy Storage Mater, 2019, 20: 307–314

    Article  Google Scholar 

  95. Zou X, Liao K, Wang D, Lu Q, Zhou C, He P, Ran R, Zhou W, Jin W, Shao Z. Energy Storage Mater, 2020, 27: 297–306

    Article  Google Scholar 

  96. Liu T, Vivek JP, Zhao EW, Lei J, Garcia-Araez N, Grey CP. Chem Rev, 2020, 120: 6558–6625

    Article  CAS  PubMed  Google Scholar 

  97. Ping W, Wang C, Lin Z, Hitz E, Yang C, Wang H, Hu L. Adv Energy Mater, 2020, 10: 2000702

    Article  CAS  Google Scholar 

  98. Zhang Z, Yang J, Huang W, Wang H, Zhou W, Li Y, Li Y, Xu J, Huang W, Chiu W, Cui Y. Matter, 2021, 4: 302–312

    Article  CAS  Google Scholar 

  99. Cheng D, Lu B, Raghavendran G, Zhang M, Meng YS. Matter, 2022, 5: 26–42

    Article  CAS  Google Scholar 

  100. He Y, Ren X, Xu Y, Engelhard MH, Li X, Xiao J, Liu J, Zhang JG, Xu W, Wang C. Nat Nanotechnol, 2019, 14: 1042–1047

    Article  CAS  PubMed  Google Scholar 

  101. Kazyak E, Wang MJ, Lee K, Yadavalli S, Sanchez AJ, Thouless MD, Sakamoto J, Dasgupta NP. Matter, 2022, 5: 3912–3934

    Article  CAS  Google Scholar 

  102. Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L. J Am Chem Soc, 2017, 139: 14257–14264

    Article  CAS  PubMed  Google Scholar 

  103. Shen F, Dixit MB, Xiao X, Hatzell KB. ACS Energy Lett, 2018, 3: 1056–1061

    Article  CAS  Google Scholar 

  104. Xiang Y, Tao M, Zhong G, Liang Z, Zheng G, Huang X, Liu X, Jin Y, Xu N, Armand M, Zhang JG, Xu K, Fu R, Yang Y. Sci Adv, 2021, 7: eabj3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang Q, Jiang N, Shao Y, Zhang Y, Zhao X, Zeng Y, Qiu J. Sci China Chem, 2022, 65: 2351–2368

    Article  CAS  Google Scholar 

  106. Hassoun J, Jung HG, Lee DJ, Park JB, Amine K, Sun YK, Scrosati B. Nano Lett, 2012, 12: 5775–5779

    Article  CAS  PubMed  Google Scholar 

  107. Wu S, Zhu K, Tang J, Liao K, Bai S, Yi J, Yamauchi Y, Ishida M, Zhou H. Energy Environ Sci, 2016, 9: 3262–3271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2020YFE0204500), the National Natural Science Foundation of China (52071311, 52271140), Jilin Province Science and Technology Development Plan Funding Project (20220201112GX), Changchun Science and Technology Development Plan Funding Project (21ZY06), and Youth Innovation Promotion Association CAS (2020230, 2021223).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanqiang Liu or Xinbo Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Chen, K., Liu, J. et al. Li–air batteries: air stability of lithium metal anodes. Sci. China Chem. 67, 122–136 (2024). https://doi.org/10.1007/s11426-023-1581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1581-2

Navigation