Skip to main content
Log in

Electrosynthesis of hydroxylamine from nitrate reduction in water

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hydroxylamine (NH2OH), a vital but unstable industrial feedstock, is presently prepared under harsh conditions that cause environmental and energy concerns. Here, we report an electrochemical method to prepare oximes, which serve as precursors for NH2OH after facile hydrolysis. The carbon-supported amorphous Mn electrocatalyst delivers a current density of ∼100 mA cm−2 with a Faradaic efficiency of 40.92% and a yield rate of 0.251 mmol cm−2 h−1 for formaldoxime (CH2NOH) generation by using nitrate and formaldehyde as reactants. Formaldoxime can be easily released to produce NH2OH via hydrolysis. Impressively, this method exhibits an economic advantage over conventional manufacturing based on techno-economic analysis. A series of control experiments, in situ characterizations, and theoretical simulations unveil the reaction mechanism via the spontaneous reaction between an aldehyde and *NH2OH intermediate derived from nitrate electroreduction. The high activity of Mn originates from its inhibitory effects on the further reduction of key *NH2OH intermediate. This strategy opens a sustainable and green way for NH2OH synthesis under mild conditions using renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mas-Roselló J, Smejkal T, Cramer N. Science, 2020, 368: 1098–1102

    PubMed  Google Scholar 

  2. Daems N, Sheng X, Alvarez-Gallego Y, Vankelecom IFJ, Pescarmona PP. Green Chem, 2016, 18: 1547–1559

    CAS  Google Scholar 

  3. Mas-Roselló J, Cope CJ, Tan E, Pinson B, Robinson A, Smejkal T, Cramer N. Angew Chem Int Ed, 2021, 60: 15524–15532

    Google Scholar 

  4. Mas-Roselló J, Cramer N. Chem Eur J, 2022, 28: e202103683

    PubMed  Google Scholar 

  5. Wu Y, Jiang Z, Lin Z, Liang Y, Wang H. Nat Sustain, 2021, 4: 725–730

    Google Scholar 

  6. Rooney CL, Wu Y, Tao Z, Wang H. J Am Chem Soc, 2021, 143: 19983–19991

    CAS  PubMed  Google Scholar 

  7. Wang Y, Yu Y, Jia R, Zhang C, Zhang B. Natl Sci Rev, 2019, 6: 730–738

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liang J, Liu P, Li Q, Li T, Yue L, Luo Y, Liu Q, Li N, Tang B, Alshehri AA, Shakir I, Agboola PO, Sun C, Sun X. Angew Chem Int Ed, 2022, 61: e202202087

    CAS  Google Scholar 

  9. Li J, Zhang Y, Kuruvinashetti K, Kornienko N. Nat Rev Chem, 2022, 6: 303–319

    CAS  PubMed  Google Scholar 

  10. Huang Y, Wang Y, Wu Y, Yu Y, Zhang B. Sci China Chem, 2022, 65: 204–206

    CAS  Google Scholar 

  11. Kim DH, Ringe S, Kim H, Kim S, Kim B, Bae G, Oh HS, Jaouen F, Kim W, Kim H, Choi CH. Nat Commun, 2021, 12: 1856

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo C, Zhou W, Lan X, Wang Y, Li T, Han S, Yu Y, Zhang B. J Am Chem Soc, 2022, 144: 16006–16011

    CAS  PubMed  Google Scholar 

  13. Wu Y, Zhao J, Wang C, Li T, Zhao B, Song Z, Zhang B. Preprint, 2022, doi: https://doi.org/10.21203/rs.3.rs-2047763/v1

  14. Liu X, Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Nat Commun, 2022, 13: 5471

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li L, Tang C, Cui X, Zheng Y, Wang X, Xu H, Zhang S, Shao T, Davey K, Qiao S. Angew Chem Int Ed, 2021, 60: 14131–14137

    CAS  Google Scholar 

  16. Liu C, Wang Y, Zhang B. Sci China Chem, 2020, 63: 1173–1174

    CAS  Google Scholar 

  17. Zhou P, Zhang J. Sci Chi Chem, 2023

  18. Fu J, Yang Y, Hu JS. ACS Mater Lett, 2021, 3: 1468–1476

    CAS  Google Scholar 

  19. Yuan LP, Tang T, Hu JS, Wan LJ. Acc Mater Res, 2021, 2: 907–919

    CAS  Google Scholar 

  20. van Langevelde PH, Katsounaros I, Koper MTM. Joule, 2021, 5: 290–294

    Google Scholar 

  21. Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Angew Chem Int Ed, 2020, 59: 5350–5354

    CAS  Google Scholar 

  22. Hu Q, Qin Y, Wang X, Wang Z, Huang X, Zheng H, Gao K, Yang H, Zhang P, Shao M, He C. Energy Environ Sci, 2021, 14: 4989–4997

    CAS  Google Scholar 

  23. Wu ZY, Karamad M, Yong X, Huang Q, Cullen DA, Zhu P, Xia C, Xiao Q, Shakouri M, Chen FY, Kim JYT, Xia Y, Heck K, Hu Y, Wong MS, Li Q, Gates I, Siahrostami S, Wang H. Nat Commun, 2021, 12: 2870

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi J, Du HL, Nguyen CK, Suryanto BHR, Simonov AN, MacFarlane DR. ACS Energy Lett, 2020, 5: 2095–2097

    CAS  Google Scholar 

  25. Wang Y, Zhang P, Lin X, Zhang G, Gao H, Wang Q, Zhao Z J, Wang T, Gong J. Sci China Chem, 2023

  26. Pérez-Gallent E, Figueiredo MC, Katsounaros I, Koper MTM. Electrochim Acta, 2017, 227: 77–84

    Google Scholar 

  27. Wang Y, Wang C, Li M, Yu Y, Zhang B. Chem Soc Rev, 2021, 50: 6720–6733

    CAS  PubMed  Google Scholar 

  28. Cheng X, He J, Ji H, Zhang H, Cao Q, Sun W, Yan C, Lu J. Adv Mater, 2022, 34: 2205767

    CAS  Google Scholar 

  29. Taniguchi I, Nakashima N, Matsushita K, Yasukouchi K. J Electroanal Chem Interfacial Electrochem, 1987, 224: 199–209

    CAS  Google Scholar 

  30. Braley SE, Kwon HY, Xu S, Dalton EZ, Jakubikova E, Smith JM. Inorg Chem, 2022, 61: 12998–13006

    CAS  PubMed  Google Scholar 

  31. Taniguchi L, Nakashima N, Yasukouchi K. J Chem Soc Chem Commun, 1986, 1814–1815

  32. Melchionna M, Fornasiero P. Chem, 2021, 7: 834–835

    CAS  Google Scholar 

  33. Cui X, Li W, Ryabchuk P, Junge K, Beller M. Nat Catal, 2018, 1: 385–397

    CAS  Google Scholar 

  34. Anantharaj S, Noda S. Small, 2020, 16: 1905779

    CAS  Google Scholar 

  35. Cai Z, Li L, Zhang Y, Yang Z, Yang J, Guo Y, Guo L. Angew Chem Int Ed, 2019, 58: 4189–4194

    CAS  Google Scholar 

  36. Du F, Zhang Y, He H, Li T, Wen G, Zhou Y, Zou Z. J Power Sources, 2019, 431: 182–188

    CAS  Google Scholar 

  37. Socratous J, Banger KK, Vaynzof Y, Sadhanala A, Brown AD, Sepe A, Steiner U, Sirringhaus H. Adv Funct Mater, 2015, 25: 1873–1885

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li W, Xiong D, Gao X, Liu L. Chem Commun, 2019, 55: 8744–8763

    CAS  Google Scholar 

  39. Wu TH, Hesp D, Dhanak V, Collins C, Braga F, Hardwick LJ, Hu CC. J Mater Chem A, 2015, 3: 12786–12795

    CAS  Google Scholar 

  40. Chen FY, Wu ZY, Gupta S, Rivera DJ, Lambeets SV, Pecaut S, Kim JYT, Zhu P, Finfrock YZ, Meira DM, King G, Gao G, Xu W, Cullen DA, Zhou H, Han Y, Perea DE, Muhich CL, Wang H. Nat Nanotechnol, 2022, 17: 759–767

    CAS  PubMed  Google Scholar 

  41. Jia C, Dastafkan K, Ren W, Yang W, Zhao C. Sustain Energy Fuels, 2019, 3: 2890–2906

    CAS  Google Scholar 

  42. Moussavi G, Bagheri A, Khavanin A. J Hazard Mater, 2012, 237–238: 147–152

    PubMed  Google Scholar 

  43. Wang Y, Li H, Zhou W, Zhang X, Zhang B, Yu Y. Angew Chem Int Ed, 2022, 61: e202202604

    CAS  Google Scholar 

  44. Einsle O, Messerschmidt A, Huber R, Kroneck PMH, Neese F. J Am Chem Soc, 2002, 124: 11737–11745

    CAS  PubMed  Google Scholar 

  45. Li J, Zhan G, Yang J, Quan F, Mao C, Liu Y, Wang B, Lei F, Li L, Chan AWM, Xu L, Shi Y, Du Y, Hao W, Wong PK, Wang J, Dou SX, Zhang L, Yu JC. J Am Chem Soc, 2020, 142: 7036–7046

    CAS  PubMed  Google Scholar 

  46. Ye S, Chen Z, Zhang G, Chen W, Peng C, Yang X, Zheng L, Li Y, Ren X, Cao H, Xue D, Qiu J, Zhang Q, Liu J. Energy Environ Sci, 2022, 15: 760–770

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22271213 (B.Z.) and 22071173 (Y.Y.)), the Haihe Laboratory of Sustainable Chemical Transformations, and the National Postdoctoral Science Foundation of China (2022M722357 (Y.W.)). The authors appreciate Ms. Yang Liu in the Analysis and Testing Center at Tianjin University for in situ ATR-SEIRAS measurements. The authors do appreciate Dr. Kongying Zhu in the Nuclear Magnetic Resonance Testing Center at Tianjin University for NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongmeng Wu, Yifu Yu or Bin Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, X., Cheng, C., Guo, C. et al. Electrosynthesis of hydroxylamine from nitrate reduction in water. Sci. China Chem. 66, 1758–1762 (2023). https://doi.org/10.1007/s11426-023-1580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1580-2

Keywords

Navigation