Skip to main content
Log in

A dual-switching spin-crossover framework with redox regulation and guest response

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A dual-switching spin crossover metal-organic framework (SCO-MOF) [Fe(TPB){PtII(CN)4}]·3iPrOH·4H2O (TPB = 1,2,4,5-tetra(pyridin-4-yl)benzene) is developed via the combination of redox-active framework and tunable guests. The reversible structural transformation between [PtII(CN)4]2− and [PtIVBr2(CN)4]2− moieties can be manipulated by redox post-synthetic modification (PSM), which results in the change of SCO behaviors from step-wise to one-step. The influences of the oxidative addition of bromides on the ligand field splitting of Fe side are further explored by density functional theory calculations. Besides, the modulation of hysteretic four-/three-step, one-step and four-step SCO behaviors can be achieved by tuning the composition of guest molecules. Therefore, the combination of electronic bistability, redox reaction and guest recognition in a homogeneous lattice provides a utility platform for designing multi-responsive molecule-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Bléger D, Hecht S. Angew Chem Int Ed, 2015, 54: 11338–11349

    Article  Google Scholar 

  2. Miyamachi T, Gruber M, Davesne V, Bowen M, Boukari S, Joly L, Scheurer F, Rogez G, Yamada TK, Ohresser P, Beaurepaire E, Wulfhekel W. Nat Commun, 2012, 3: 938

    Article  PubMed  Google Scholar 

  3. Zhang JL, Zhong JQ, Lin JD, Hu WP, Wu K, Xu GQ, Wee ATS, Chen W. Chem Soc Rev, 2015, 44: 2998–3022

    Article  CAS  PubMed  Google Scholar 

  4. Bigdeli F, Lollar CT, Morsali A, Zhou H. Angew Chem Int Ed, 2020, 59: 4652–4669

    Article  CAS  Google Scholar 

  5. Sato O. Nat Chem, 2016, 8: 644–656

    Article  CAS  PubMed  Google Scholar 

  6. Zhao L, Meng YS, Liu Q, Sato O, Shi Q, Oshio H, Liu T. Nat Chem, 2021, 13: 698–704

    Article  CAS  PubMed  Google Scholar 

  7. Rat S, Piedrahita-Bello M, Salmon L, Molnár G, Demont P, Bousseksou A. Adv Mater, 2018, 30: 1705275

    Article  Google Scholar 

  8. Ni ZP, Liu JL, Hoque MN, Liu W, Li JY, Chen YC, Tong ML. Coord Chem Rev, 2017, 335: 28–43

    Article  CAS  Google Scholar 

  9. Neville SM, Halder GJ, Chapman KW, Duriska MB, Moubaraki B, Murray KS, Kepert CJ. J Am Chem Soc, 2009, 131: 12106–12108

    Article  CAS  PubMed  Google Scholar 

  10. Xue JP, Hu Y, Zhao B, Liu ZK, Xie J, Yao ZS, Tao J. Nat Commun, 2022, 13: 3510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu XR, Liu ZK, Zeng M, Chen MX, Tao J, Wu SQ, Kou HZ. Sci China Chem, 2022, 65: 1569–1576

    Article  Google Scholar 

  12. Yao N, Zhao L, Sun H, Yi C, Guan Y, Li Y, Oshio H, Meng Y, Liu T. Angew Chem Int Ed, 2022, 61: e202208208

    CAS  Google Scholar 

  13. Wang LF, Lv BH, Wu FT, Huang GZ, Ruan ZY, Chen YC, Liu M, Ni ZP, Tong ML. Sci China Chem, 2022, 65: 120–127

    Article  CAS  Google Scholar 

  14. Paez-Espejo M, Sy M, Boukheddaden K. J Am Chem Soc, 2016, 138: 3202–3210

    Article  CAS  PubMed  Google Scholar 

  15. Cruddas J, Powell BJ. J Am Chem Soc, 2019, 141: 19790–19799

    Article  CAS  PubMed  Google Scholar 

  16. Cruddas J, Powell BJ. Inorg Chem Front, 2020, 7: 4424–4437

    Article  CAS  Google Scholar 

  17. Sciortino NF, Scherl-Gruenwald KR, Chastanet G, Halder GJ, Chapman KW, Létard JF, Kepert CJ. Angew Chem Int Ed, 2012, 51: 10154–10158

    Article  CAS  Google Scholar 

  18. Clements JE, Price JR, Neville SM, Kepert CJ. Angew Chem Int Ed, 2016, 55: 15105–15109

    Article  CAS  Google Scholar 

  19. Sciortino NF, Zenere KA, Corrigan ME, Halder GJ, Chastanet G, Létard JF, Kepert CJ, Neville SM. Chem Sci, 2017, 8: 701–707

    Article  CAS  PubMed  Google Scholar 

  20. Liu W, Peng YY, Wu SG, Chen YC, Hoque MN, Ni ZP, Chen XM, Tong ML. Angew Chem Int Ed, 2017, 56: 14982–14986

    Article  CAS  Google Scholar 

  21. Zhang CJ, Lian KT, Huang GZ, Bala S, Ni ZP, Tong ML. Chem Commun, 2019, 55: 11033–11036

    Article  CAS  Google Scholar 

  22. Zhang CJ, Lian KT, Wu SG, Liu Y, Huang GZ, Ni ZP, Tong ML. Inorg Chem Front, 2020, 7: 911–917

    Article  CAS  Google Scholar 

  23. Peng YY, Wu SG, Chen YC, Liu W, Huang GZ, Ni ZP, Tong ML. Inorg Chem Front, 2020, 7: 1685–1690

    Article  CAS  Google Scholar 

  24. Piñeiro-López L, Valverde-Muñoz FJ, Trzop E, Muñoz MC, Seredyuk M, Castells-Gil J, da Silva I, Martí-Gastaldo C, Collet E, Real JA. Chem Sci, 2021, 12: 1317–1326

    Article  Google Scholar 

  25. Xie K, Ruan Z, Lyu B, Chen X, Zhang X, Huang G, Chen Y, Ni Z, Tong M. Angew Chem Int Ed, 2021, 60: 27144–27150

    Article  CAS  Google Scholar 

  26. Turo-Cortés R, Meneses-Sánchez M, Delgado T, Bartual-Murgui C, Muñoz MC, Real JA. J Mater Chem C, 2022, 10: 10686–10698

    Article  Google Scholar 

  27. Wu S, Bala S, Ruan Z, Huang G, Ni Z, Tong M. Chin Chem Lett, 2022, 33: 1381–1384

    Article  CAS  Google Scholar 

  28. Niel V, Martinez-Agudo JM, Muñoz MC, Gaspar AB, Real JA. Inorg Chem, 2001, 40: 3838–3839

    Article  CAS  PubMed  Google Scholar 

  29. Bonhommeau S, Molnár G, Galet A, Zwick A, Real JA, McGarvey JJ, Bousseksou A. Angew Chem Int Ed, 2005, 44: 4069–4073

    Article  CAS  Google Scholar 

  30. Ohba M, Yoneda K, Agustí G, Muñoz M, Gaspar A, Real J, Yamasaki M, Ando H, Nakao Y, Sakaki S, Kitagawa S. Angew Chem Int Ed, 2009, 48: 4767–4771

    Article  CAS  Google Scholar 

  31. Bao X, Shepherd HJ, Salmon L, Molnár G, Tong ML, Bousseksou A. Angew Chem Int Ed, 2013, 52: 1198–1202

    Article  CAS  Google Scholar 

  32. Agustí G, Ohtani R, Yoneda K, Gaspar A, Ohba M, Sánchez-Royo J, Muñoz M, Kitagawa S, Real J. Angew Chem Int Ed, 2009, 48: 8944–8947

    Article  Google Scholar 

  33. Ohtani R, Yoneda K, Furukawa S, Horike N, Kitagawa S, Gaspar AB, Muñoz MC, Real JA, Ohba M. J Am Chem Soc, 2011, 133: 8600–8605

    Article  CAS  PubMed  Google Scholar 

  34. Wu SG, Wang LF, Ruan ZY, Du SN, Gómez-Coca S, Ni ZP, Ruiz E, Chen XM, Tong ML. J Am Chem Soc, 2022, 144: 14888–14896

    Article  CAS  PubMed  Google Scholar 

  35. Yang JH, Zhao YX, Xue JP, Yao ZS, Tao J. Inorg Chem, 2021, 60: 7337–7344

    Article  CAS  PubMed  Google Scholar 

  36. Koch TR, Johnson PL, Washecheck DM, Cornish TF, Williams JM. Acta Crystlogr B Struct Sci, 1977, 33: 3249–3251

    Article  Google Scholar 

  37. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry. Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry. Hoboken: John Wiley & Sons, 2008

    Google Scholar 

  38. Sergeenko AS, Ovens JS, Leznoff DB. Inorg Chem, 2017, 56: 7870–7881

    Article  CAS  PubMed  Google Scholar 

  39. Ishii T, Tsuboi S, Sakane G, Yamashita M, Breedlove BK. Dalton Trans, 2009, 680–687

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0306001), the National Natural Science Foundation of China (22075323), the Pearl River Talent Plan of Guangdong (2017BT01C161), the Guangdong Special Fund for Science and Technology Innovation Strategy (pdjh2023b0019) and the Guangdong University Student Innovation Training Project (202210386).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-Guo Wu, Zhao-Ping Ni or Ming-Liang Tong.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

A dual-switching spin-crossover framework with redox regulation and guest response

checkCIF/PLATON report

checkCIF/PLATON report

checkCIF/PLATON report

checkCIF/PLATON report

checkCIF/PLATON report

checkCIF/PLATON report

checkCIF/PLATON report

checkCIF/PLATON report

Supplementary material, approximately 1.10 MB.

checkCIF/PLATON report

Supplementary material, approximately 1.15 MB.

checkCIF/PLATON report

Supplementary material, approximately 865 KB.

Supplementary material, approximately 259 KB.

Supplementary material, approximately 284 KB.

Supplementary material, approximately 162 KB.

Supplementary material, approximately 190 KB.

Supplementary material, approximately 1.22 MB.

Supplementary material, approximately 1.10 MB.

Supplementary material, approximately 1.27 MB.

Supplementary material, approximately 2.84 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LF., Wu, SG., Ruan, ZY. et al. A dual-switching spin-crossover framework with redox regulation and guest response. Sci. China Chem. 66, 1744–1749 (2023). https://doi.org/10.1007/s11426-023-1573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1573-8

Keywords

Navigation