Skip to main content
Log in

Flexible nanocomposite electrodes with optimized hybrid structure for improved low-grade heat harvest via thermocells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Thermal energy is ubiquitous and constantly generated in nature and society. Thermocells (TECs) represent a promising energy-conversion technology that can directly translate thermal energy into electricity with a large thermopower, thus having attracted considerable attention in recent years. Nevertheless, the use of noble platinum electrodes in TECs has substantially limited their widespread applications, as the scarcity of platinum element increases the cost of materials, and its intrinsic rigidity is not conducive to flexible and wearable applications under heat sources with complex surface geometry. Herein, we propose a facile hybridizing route to constructing flexible electrodes with optimized nanostructures. The flexible composite electrode is fabricated by decorating a single-walled carbon nanotube network with conducting polypyrrole nanospheres through controlled electrochemical deposition. With refined interfacial nanostructures, the resultant composite film can facilitate carrier transport/transfer at the electrolyte-electrode interface, and thereby shows superior overall thermoelectrochemical performance to noble platinum electrode. The TEC employing the flexible composite electrodes yields a maximum output power of 2.555 µW under the temperature difference of 30 K, and a device comprising 6 TEC units is assembled to efficiently utilize waste heat and human body heat, revealing the high potential of low-grade heat harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forman C, Muritala IK, Pardemann R, Meyer B. Renew Sustain Energy Rev, 2016, 57: 1568–1579

    Google Scholar 

  2. Xu X, Huang Y, Liu X, Jia B, Cui J, He R, Wang J, Luo Y, Nielsch K, He J. Energy Environ Sci, 2022, 15: 4058–4068

    CAS  Google Scholar 

  3. Shi X, Liu W, Li M, Sun Q, Xu S, Du D, Zou J, Chen Z. Adv Energy Mater, 2022, 12: 2200670

    CAS  Google Scholar 

  4. Zhang Y, Zhang Q, Chen G. Carbon Energy, 2020, 2: 408–436

    CAS  Google Scholar 

  5. Kishore RA, Priya S. Sustain Energy Fuels, 2017, 1: 1899–1908

    CAS  Google Scholar 

  6. Wu G, Xue Y, Wang L, Wang X, Chen G. J Mater Chem A, 2018, 6: 3376–3380

    CAS  Google Scholar 

  7. Duan J, Yu B, Huang L, Hu B, Xu M, Feng G, Zhou J. Joule, 2021, 5: 768–779

    CAS  Google Scholar 

  8. Hasan SW, Said SM, Sabri MFM, Bakar ASA, Hashim NA, Hasnan MMIM, Pringle JM, Macfarlane DR. Sci Rep, 2016, 6: 29328

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Du C, Cao M, Li G, Hu Y, Zhang Y, Liang L, Liu Z, Chen G. Adv Funct Mater, 2022, 32: 2206083

    CAS  Google Scholar 

  10. Burmistrov I, Gorshkov N, Kovyneva N, Kolesnikov E, Khaidarov B, Karunakaran G, Cho EB, Kiselev N, Artyukhov D, Kuznetsov D, Gorokhovsky A. Renew Energy, 2020, 157: 1–8

    CAS  Google Scholar 

  11. Liu Y, Zhang S, Zhou Y, Buckingham MA, Aldous L, Sherrell PC, Wallace GG, Ryder G, Faisal S, Officer DL, Beirne S, Chen J. Adv Energy Mater, 2020, 10: 2002539

    CAS  Google Scholar 

  12. Peng P, Zhou J, Liang L, Huang X, Lv H, Liu Z, Chen G. Nano-Micro Lett, 2022, 14: 81

    CAS  Google Scholar 

  13. Bae EJ, Hun Kang Y, Jang KS, Yun Cho S. Sci Rep, 2016, 6: 18805

    CAS  PubMed  Google Scholar 

  14. Andrews FC. Science, 1976, 194: 567–571

    CAS  PubMed  Google Scholar 

  15. Liu Y, Wang H, Sherrell PC, Liu L, Wang Y, Chen J. Adv Sci, 2021, 8: 2100669

    CAS  Google Scholar 

  16. Zhou Y, Zhang S, Buckingham MA, Aldous L, Beirne S, Wu C, Liu Y, Wallace G, Chen J. Chem Eng J, 2022, 449: 137775

    CAS  Google Scholar 

  17. Buckingham MA, Aldous L. J Electroanal Chem, 2020, 872: 114280

    CAS  Google Scholar 

  18. Chang WJ, Kim SH, Hwang J, Chang J, Yang D, Kwon SS, Kim JT, Lee WW, Lee JH, Park H, Song T, Lee IH, Whang D, Il Park W. Nat Commun, 2018, 9: 3461

    PubMed  PubMed Central  Google Scholar 

  19. Abraham TJ, Tachikawa N, MacFarlane DR, Pringle JM. Phys Chem Chem Phys, 2014, 16: 2527–2532

    CAS  PubMed  Google Scholar 

  20. Jung SM, Kwon J, Lee J, Lee BJ, Kim KS, Yu DS, Kim YT. Appl Energy, 2021, 299: 117334

    CAS  Google Scholar 

  21. Jung SM, Kwon J, Lee J, Han IK, Kim KS, Kim YS, Kim YT. J Power Sources, 2021, 494: 229705

    CAS  Google Scholar 

  22. Jung SM, Kwon J, Lee J, Shim K, Park D, Kim T, Kim YH, Hwang SJ, Kim YT. ACS Appl Energy Mater, 2020, 3: 6383–6390

    CAS  Google Scholar 

  23. Lee C, Wei X, Kysar JW, Hone J. Science, 2008, 321: 385–388

    CAS  PubMed  Google Scholar 

  24. Li Y, Zhou J, Song J, Liang X, Zhang Z, Men D, Wang D, Zhang XE. Biosens Bioelectron, 2019, 144: 111534

    CAS  PubMed  Google Scholar 

  25. Nugent JM, Santhanam KSV, Rubio A, Ajayan PM. Nano Lett, 2001, 1: 87–91

    CAS  Google Scholar 

  26. Buckingham MA, Marken F, Aldous L. Sustain Energy Fuels, 2018, 2: 2717–2726

    CAS  Google Scholar 

  27. Zhang L, Kim T, Li N, Kang TJ, Chen J, Pringle JM, Zhang M, Kazim AH, Fang S, Haines C, Al-Masri D, Cola BA, Razal JM, Di J, Beirne S, MacFarlane DR, Gonzalez-Martin A, Mathew S, Kim YH, Wallace G, Baughman RH. Adv Mater, 2017, 29: 1605652

    Google Scholar 

  28. Moia D, Giovannitti A, Szumska AA, Maria IP, Rezasoltani E, Sachs M, Schnurr M, Barnes PRF, McCulloch I, Nelson J. Energy Environ Sci, 2019, 12: 1349–1357

    CAS  Google Scholar 

  29. Molina A, Patil N, Ventosa E, Liras M, Palma J, Marcilla R. ACS Energy Lett, 2020, 5: 2945–2953

    CAS  Google Scholar 

  30. Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y. Adv Mater, 2016, 28: 1517–1522

    CAS  PubMed  Google Scholar 

  31. Song WJ, Park J, Kim DH, Bae S, Kwak MJ, Shin M, Kim S, Choi S, Jang JH, Shin TJ, Kim SY, Seo K, Park S. Adv Energy Mater, 2018, 8: 1702478

    Google Scholar 

  32. Zhang M, Yuan J. Nano Res Energy, 2022, 1: e9120035

    Google Scholar 

  33. Li M, Hong M, Dargusch M, Zou J, Chen ZG. Trends Chem, 2021, 3: 561–574

    CAS  Google Scholar 

  34. Kim JH, Kang TJ. ACS Appl Mater Interfaces, 2019, 11: 28894–28899

    CAS  PubMed  Google Scholar 

  35. Nicholson RS. Anal Chem, 1965, 37: 1351–1355

    CAS  Google Scholar 

  36. Dong D, Guo H, Li G, Yan L, Zhang X, Song W. Nano Energy, 2017, 39: 470–477

    CAS  Google Scholar 

  37. Papakonstantinou P, Kern R, Robinson L, Murphy H, Irvine J, McAdams E, McLaughlin J, McNally T. Fullerenes Nanotubes Carbon Nanostruct, 2005, 13: 91–108

    CAS  Google Scholar 

  38. Adhikari A, Tiwary P, Rana D, Halder A, Nath J, Basu A, Ghoshal D, Kar P, Chakraborty AK, Chattopadhyay D. J Environ Chem Eng, 2020, 8: 104249

    CAS  Google Scholar 

  39. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A. Phys Rep, 2005, 409: 47–99

    Google Scholar 

  40. Hao Y, Wang Y, Wang L, Ni Z, Wang Z, Wang R, Koo CK, Shen Z, Thong JTL. Small, 2010, 6: 195–200

    CAS  PubMed  Google Scholar 

  41. Minisy IM, Acharya U, Kobera L, Trchová M, Unterweger C, Breitenbach S, Brus J, Pfleger J, Stejskal J, Bober P. J Mater Chem C, 2020, 8: 12140–12147

    Google Scholar 

  42. Liu Z, Yang Q, Wang D, Liang G, Zhu Y, Mo F, Huang Z, Li X, Ma L, Tang T, Lu Z, Zhi C. Adv Energy Mater, 2019, 9: 1902473

    CAS  Google Scholar 

  43. Theodosiou A, Spencer BF, Counsell J, Jones AN. Appl Surf Sci, 2020, 508: 144764

    CAS  Google Scholar 

Download references

Acknowledgements

This work was support by the National Natural Science Foundation of China (52103089), the Guangdong Basic and Applied Basic Research Foundation (2023A1515012120), the Shenzhen Science and Technology Program (JCYJ20220531100815035, RCBS2022100-8093126069) and the Opening Project of State Key Laboratory of Polymer Materials Engineering (sklpme2022-4-08). The authors also thank the Instrumental Analysis Center of Shenzhen University (Lihu Campus) for their assistance with SEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuoxin Liu or Guangming Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Z., Zhou, J., Lu, X. et al. Flexible nanocomposite electrodes with optimized hybrid structure for improved low-grade heat harvest via thermocells. Sci. China Chem. 66, 1814–1823 (2023). https://doi.org/10.1007/s11426-023-1567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1567-0

Keywords

Navigation