Skip to main content
Log in

From geometric to charge-distribution symmetry: deeper insights into lifting the performance of dysprosium single-ion magnets

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Crystal-field symmetry of lanthanide ions plays a critical role in suppressing quantum tunneling of magnetization (QTM) in single-molecule magnets (SMMs), but high-performance SMM design and modulation remain challenging only in view of the geometric symmetry of the first coordination sphere. Herein, two bis(semicarbazone)/bis(thiosemicarbazone)dysprosium single-ion magnets with pentagonal bipyramid geometry were reported, and bis(thiosemicarbazone)lanthanide complexes have never been reported to the best of our knowledge. They served as good archetypes to study the magneto-structural relationships based on the charge distribution The complex with more ideal geometric symmetry displays fast zero-field QTM with negligible “effective barrier”, owing to the defective charge distribution. By modulating the transverse crystal field via the replacement of the O sites with the less charged and larger radius S atoms, it results in lower geometric but higher charge-distribution symmetry, giving rise to the significant suppression of QTM and the enhancement of reversal barrier up to ca. 1,000 K. These results demonstrate that the charge-distribution symmetry can be chemically tailored by modification of the crystal field, which is essential for designing high-performance SMMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sessoli R, Gatteschi D, Caneschi A, Novak MA. Nature, 1993, 365: 141–143

    Article  CAS  Google Scholar 

  2. Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico AM, Arrio MA, Cornia A, Gatteschi D, Sessoli R. Nat Mater, 2009, 8: 194–197

    Article  CAS  PubMed  Google Scholar 

  3. Bogani L, Wernsdorfer W. Nat Mater, 2008, 7: 179–186

    Article  CAS  PubMed  Google Scholar 

  4. Leuenberger MN, Loss D. Nature, 2001, 410: 789–793

    Article  CAS  PubMed  Google Scholar 

  5. Jiang SD, Goß K, Cervetti C, Bogani L. Sci China Chem, 2012, 55: 867–882

    Article  CAS  Google Scholar 

  6. Liddle ST, van Slageren J. Chem Soc Rev, 2015, 44: 6655–6669

    Article  CAS  PubMed  Google Scholar 

  7. Zhu Z, Zhao C, Feng T, Liu X, Ying X, Li XL, Zhang YQ, Tang J. J Am Chem Soc, 2021, 143: 10077–10082

    Article  CAS  PubMed  Google Scholar 

  8. Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y. J Am Chem Soc, 2003, 125: 8694–8695

    Article  CAS  PubMed  Google Scholar 

  9. Jiang SD, Wang BW, Sun HL, Wang ZM, Gao S. J Am Chem Soc, 2011, 133: 4730–4733

    Article  CAS  PubMed  Google Scholar 

  10. Guo FS, Day BM, Chen YC, Tong ML, Mansikkamäki A, Layfield RA. Angew Chem Int Ed, 2017, 56: 11445–11449

    Article  CAS  Google Scholar 

  11. Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP. Nature, 2017, 548: 439–442

    Article  CAS  PubMed  Google Scholar 

  12. Guo FS, Day BM, Chen YC, Tong ML, Mansikkamäki A, Layfield RA. Science, 2018, 362: 1400–1403

    Article  CAS  PubMed  Google Scholar 

  13. Gould CA, McClain KR, Reta D, Kragskow JGC, Marchiori DA, Lachman E, Choi ES, Analytis JG, Britt RD, Chilton NF, Harvey BG, Long JR. Science, 2022, 375: 198–202

    Article  CAS  PubMed  Google Scholar 

  14. Baldoví JJ, Cardona-Serra S, Clemente-Juan JM, Coronado E, Gaita-Ariño A. Chem Sci, 2013, 4: 938–946

    Article  Google Scholar 

  15. Gatteschi D, Sessoli R, Villain J. Molecular Nanomagnets. Oxford: Oxford University Press, 2006

    Book  Google Scholar 

  16. Gatteschi D, Sessoli R. Angew Chem Int Ed, 2003, 42: 268–297

    Article  CAS  Google Scholar 

  17. Liu JL, Chen YC, Tong ML. Chem Soc Rev, 2018, 47: 2431–2453

    Article  CAS  PubMed  Google Scholar 

  18. Rinehart JD, Long JR. Chem Sci, 2011, 2: 2078–2085

    Article  CAS  Google Scholar 

  19. Wang C, Meng YS, Jiang SD, Wang BW, Gao S. Sci China Chem, 2023, 66: 683–702

    CAS  Google Scholar 

  20. Chilton NF, Goodwin CAP, Mills DP, Winpenny REP. Chem Commun, 2015, 51: 101–103

    Article  CAS  Google Scholar 

  21. Chen YC, Liu JL, Ungur L, Liu J, Li QW, Wang LF, Ni ZP, Chibotaru LF, Chen XM, Tong ML. J Am Chem Soc, 2016, 138: 2829–2837

    Article  CAS  PubMed  Google Scholar 

  22. Liu JL, Chen YC, Zheng YZ, Lin WQ, Ungur L, Wernsdorfer W, Chibotaru LF, Tong ML. Chem Sci, 2013, 4: 3310–3316

    Article  CAS  Google Scholar 

  23. Jiang SD, Wang BW, Su G, Wang ZM, Gao S. Angew Chem Int Ed, 2010, 49: 7448–7451

    Article  CAS  Google Scholar 

  24. Randall McClain K, Gould CA, Chakarawet K, Teat SJ, Groshens TJ, Long JR, Harvey BG. Chem Sci, 2018, 9: 8492–8503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ding YS, Chilton NF, Winpenny REP, Zheng YZ. Angew Chem Int Ed, 2016, 55: 16071–16074

    Article  CAS  Google Scholar 

  26. Liu J, Chen YC, Liu JL, Vieru V, Ungur L, Jia JH, Chibotaru LF, Lan Y, Wernsdorfer W, Gao S, Chen XM, Tong ML. J Am Chem Soc, 2016, 138: 5441–5450

    Article  CAS  PubMed  Google Scholar 

  27. Gupta SK, Rajeshkumar T, Rajaraman G, Murugavel R. Chem Sci, 2016, 7: 5181–5191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang GZ, Ruan ZY, Zheng JY, Chen YC, Wu SG, Liu JL, Tong ML. Sci China Chem, 2020, 63: 1066–1074

    Article  CAS  Google Scholar 

  29. Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M, Avnir D. Coord Chem Rev, 2005, 249: 1693–1708

    Article  CAS  Google Scholar 

  30. Casanova D, Llunell M, Alemany P, Alvarez S. Chem Eur J, 2005, 11: 1479–1494

    Article  CAS  PubMed  Google Scholar 

  31. Sun WB, Yan PF, Jiang SD, Wang BW, Zhang YQ, Li HF, Chen P, Wang ZM, Gao S. Chem Sci, 2016, 7: 684–691

    Article  CAS  PubMed  Google Scholar 

  32. Jiang Z, Sun L, Yang Q, Yin B, Ke H, Han J, Wei Q, Xie G, Chen S. J Mater Chem C, 2018, 6: 4273–4280

    Article  CAS  Google Scholar 

  33. Zhu L, Yin B, Ma P, Li D. Inorg Chem, 2020, 59: 16117–16121

    Article  CAS  PubMed  Google Scholar 

  34. Chen SM, Xiong J, Zhang YQ, Yuan Q, Wang BW, Gao S. Chem Sci, 2018, 9: 7540–7545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu H, Li M, Yin B, Xia Z, Ke H, Wei Q, Xie G, Chen S, Gao S. Dalton Trans, 2019, 48: 16384–16394

    Article  CAS  PubMed  Google Scholar 

  36. Pfleger RF, Schlittenhardt S, Merkel MP, Ruben M, Fink K, Anson CE, Bendix J, Powell AK. Chem Eur J, 2021, 27: 15086–15095

    Article  Google Scholar 

  37. Li HQ, Wang GL, Sun YC, Zhang YQ, Wang XY. Inorg Chem, 2022, 61: 17537–17549

    Article  CAS  PubMed  Google Scholar 

  38. Bazhenova TA, Mironov VS, Yakushev IA, Svetogorov RD, Maximova OV, Manakin YV, Kornev AB, Vasiliev AN, Yagubskii EB. Inorg Chem, 2020, 59: 563–578

    Article  CAS  PubMed  Google Scholar 

  39. Jiang ZX, Liu JL, Chen YC, Liu J, Jia JH, Tong ML. Chem Commun, 2016, 52: 6261–6264

    Article  CAS  Google Scholar 

  40. Kalita P, Ahmed N, Bar AK, Dey S, Jana A, Rajaraman G, Sutter JP, Chandrasekhar V. Inorg Chem, 2020, 59: 6603–6612

    Article  CAS  PubMed  Google Scholar 

  41. Bar AK, Kalita P, Sutter JP, Chandrasekhar V. Inorg Chem, 2018, 57: 2398–2401

    Article  CAS  PubMed  Google Scholar 

  42. Canaj AB, Dey S, Céspedes O, Wilson C, Rajaraman G, Murrie M. Chem Commun, 2020, 56: 1533–1536

    Article  CAS  Google Scholar 

  43. Cao W, Gao C, Zhang YQ, Qi D, Liu T, Wang K, Duan C, Gao S, Jiang J. Chem Sci, 2015, 6: 5947–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thomas-Hargreaves LR, Giansiracusa MJ, Gregson M, Zanda E, O’Donnell F, Wooles AJ, Chilton NF, Liddle ST. Chem Sci, 2021, 12: 3911–3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen CH, Krylov DS, Avdoshenko SM, Liu F, Spree L, Yadav R, Alvertis A, Hozoi L, Nenkov K, Kostanyan A, Greber T, Wolter AUB, Popov AA. Chem Sci, 2017, 8: 6451–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ungur L, Thewissen M, Costes JP, Wernsdorfer W, Chibotaru LF. Inorg Chem, 2013, 52: 6328–6337

    Article  CAS  PubMed  Google Scholar 

  47. Chibotaru LF, Ungur L. J Chem Phys, 2012, 137: 064112

    Article  CAS  PubMed  Google Scholar 

  48. Aravena D. J Phys Chem Lett, 2018, 9: 5327–5333

    Article  CAS  PubMed  Google Scholar 

  49. Yin B, Li CC. Phys Chem Chem Phys, 2020, 22: 9923–9933

    Article  CAS  PubMed  Google Scholar 

  50. Gagliardi L, Lindh R, Karlström G. J Chem Phys, 2004, 121: 4494–4500

    Article  CAS  PubMed  Google Scholar 

  51. Li M, Wu H, Xia Z, Montigaud V, Cador O, Le Guennic B, Ke H, Wang W, Xie G, Chen S. Chem Commun, 2019, 55: 14661–14664

    Article  CAS  Google Scholar 

  52. Huang G, Fernandez-Garcia G, Badiane I, Camarra M, Freslon S, Guillou O, Daiguebonne C, Totti F, Cador O, Guizouarn T, Le Guennic B, Bernot K. Chem Eur J, 2018, 24: 6983–6991

    Article  CAS  PubMed  Google Scholar 

  53. Aravena D, Neese F, Pantazis DA. J Chem Theor Comput, 2016, 12: 1148–1156

    Article  CAS  Google Scholar 

  54. Wang M, Guo Y, Han Z, Cheng X, Zhang YQ, Shi W, Cheng P. Inorg Chem, 2022, 61: 9785–9791

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0306001), the National Natural Science Foundation of China (22073115, 22105230, 22131011, 21821003), and the Pearl River Talent Plan of Guangdong (2017BT01C161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Liang Liu.

Additional information

Supporting information

The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Zhou, YQ., Du, SN. et al. From geometric to charge-distribution symmetry: deeper insights into lifting the performance of dysprosium single-ion magnets. Sci. China Chem. 66, 1989–1996 (2023). https://doi.org/10.1007/s11426-023-1563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1563-5

Navigation