Skip to main content
Log in

Construction of chiral through-space luminophores via symmetry breaking triggered by sequenced chlorination

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The construction of molecular chirality is crucial for exploring novel luminophores with chiroptical properties. Classic asymmetric synthesis of chiral center or axial is not powerful enough on through-space architecture. Accessible methodologies for breaking molecular symmetry could be promising but remain less investigated. Herein, we report a novel methodology for constructing chiral through-space luminophores via simple chlorination on bridged carbazole motifs. The chlorination breaks the molecular symmetry and thus results in molecular chirality by eliminating the mirror plane or rotating axis. Interestingly, continuous multiple chlorinations can rebuild and break the symmetry of the skeleton in succession. Several chiral and achiral isomeric analogues are synthesized and characterized with impressive chiroptical properties. Results of chiral high performance liquid chromatography (HPLC), single-crystal X-ray diffraction, kinetic racemization, and chiroptical property investigation demonstrate the effectiveness of our rational design strategy. It provides a feasible methodology for exploring novel chiral luminescent materials based on versatile though-space skeletons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao J, He Y, Lin S, Fan Q, Guo J. J Mater Chem C, 2022, 10: 7311–7318

    Article  CAS  Google Scholar 

  2. Campeau LC, Parisien M, Jean A, Fagnou K. J Am Chem Soc, 2006, 128: 581–590

    Article  CAS  PubMed  Google Scholar 

  3. Zhang C, Li ZS, Dong XY, Niu YY, Zang SQ. Adv Mater, 2022, 34: 2109496

    Article  CAS  Google Scholar 

  4. Yuan YX, Jia JH, Song YP, Ye FY, Zheng YS, Zang SQ. J Am Chem Soc, 2022, 144: 5389–5399

    Article  CAS  PubMed  Google Scholar 

  5. Frédéric L, Desmarchelier A, Plais R, Lavnevich L, Muller G, Villafuerte C, Clavier G, Quesnel E, Racine B, Meunier-Della-Gatta S, Dognon JP, Thuéry P, Crassous J, Favereau L, Pieters G. Adv Funct Mater, 2020, 30: 2004838

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kong FC, Yang SY, Liao XJ, Feng ZQ, Shen WS, Jiang ZQ, Zhou DY, Zheng YX, Liao LS. Adv Funct Mater, 2022, 32: 2201512

    Article  CAS  Google Scholar 

  7. Li M, Li SH, Zhang D, Cai M, Duan L, Fung MK, Chen CF. Angew Chem Int Ed, 2018, 57: 2889–2893

    Article  CAS  Google Scholar 

  8. Tu ZL, Yan ZP, Liang X, Chen L, Wu ZG, Wang Y, Zheng YX, Zuo JL, Pan Y. Adv Sci, 2020, 7: 2000804

    Article  CAS  Google Scholar 

  9. Wang YF, Lu HY, Chen C, Li M, Chen CF. Org Electron, 2019, 70: 71–77

    Article  CAS  Google Scholar 

  10. Yang CJ, Zhang C, Gu QS, Fang JH, Su XL, Ye L, Sun Y, Tian Y, Li ZL, Liu XY. Nat Catal, 2020, 3: 539–546

    Article  CAS  Google Scholar 

  11. Ouyang GH, He YM, Li Y, Xiang JF, Fan QH. Angew Chem Int Ed, 2015, 54: 4334–4337

    Article  CAS  Google Scholar 

  12. Lee JJ, Kim BC, Choi HJ, Bae S, Araoka F, Choi SW. ACS Nano, 2020, 14: 5243–5250

    Article  CAS  PubMed  Google Scholar 

  13. Yang D, Han J, Sang Y, Zhao T, Liu M, Duan P. J Am Chem Soc, 2021, 143: 13259–13265

    Article  CAS  PubMed  Google Scholar 

  14. Tsuji H, Nakamura E. Acc Chem Res, 2019, 52: 2939–2949

    Article  CAS  PubMed  Google Scholar 

  15. Wang YD, Shao JY, Lan ZR, Zhong YW. Org Mater, 2022, 4: 28–35

    Article  Google Scholar 

  16. Takaishi K, Murakami S, Yoshinami F, Ema T. Angew Chem Int Ed, 2022, 61

  17. Li ZQ, Gong ZL, Shao JY, Yao J, Zhong YW. Angew Chem Int Ed, 2021, 60: 14595–14600

    Article  CAS  Google Scholar 

  18. Zhou M, Sang Y, Jin X, Chen S, Guo J, Duan P, Liu M. ACS Nano, 2021, 15: 2753–2761

    Article  CAS  PubMed  Google Scholar 

  19. Yang SY, Wang YK, Peng CC, Wu ZG, Yuan S, Yu YJ, Li H, Wang TT, Li HC, Zheng YX, Jiang ZQ, Liao LS. J Am Chem Soc, 2020, 142: 17756–17765

    Article  CAS  PubMed  Google Scholar 

  20. Li Q, Hu J, Lv J, Wang X, Shao S, Wang L, Jing X, Wang F. Angew Chem Int Ed, 2020, 59: 20174–20182

    Article  CAS  Google Scholar 

  21. Zhang YP, Liang X, Luo XF, Song SQ, Li S, Wang Y, Mao ZP, Xu WY, Zheng YX, Zuo JL, Pan Y. Angew Chem Int Ed, 2021, 60: 8435–8440

    Article  CAS  Google Scholar 

  22. Feuillastre S, Pauton M, Gao L, Desmarchelier A, Riives AJ, Prim D, Tondelier D, Geffroy B, Muller G, Clavier G, Pieters G. J Am Chem Soc, 2016, 138: 3990–3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Imagawa T, Hirata S, Totani K, Watanabe T, Vacha M. Chem Commun, 2015, 51: 13268–13271

    Article  CAS  Google Scholar 

  24. Sharma N, Spuling E, Mattern CM, Li W, Fuhr O, Tsuchiya Y, Adachi C, Bräse S, Samuel IDW, Zysman-Colman E. Chem Sci, 2019, 10: 6689–6696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Zhang Y, Hu W, Quan Y, Li Y, Cheng Y. ACS Appl Mater Interfaces, 2019, 11: 26165–26173

    Article  CAS  PubMed  Google Scholar 

  26. Wu ZG, Han HB, Yan ZP, Luo XF, Wang Y, Zheng YX, Zuo JL, Pan Y. Adv Mater, 2019, 31: 1900524

    Article  Google Scholar 

  27. Zhen S, Mao JC, Chen L, Ding S, Luo W, Zhou XS, Qin A, Zhao Z, Tang BZ. Nano Lett, 2018, 18: 4200–4205

    Article  CAS  PubMed  Google Scholar 

  28. Yu J, Ma H, Huang W, Liang Z, Zhou K, Lv A, Li XG, He Z. JACS Au, 2021, 1: 1694–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang S, Hu D, Guan X, Cai S, Shi G, Shuai Z, Zhang J, Peng Q, Wan X. Angew Chem Int Ed, 2021, 60: 21918–21926

    Article  CAS  Google Scholar 

  30. Krzeszewski M, Ito H, Itami K. J Am Chem Soc, 2022, 144: 862–871

    Article  CAS  PubMed  Google Scholar 

  31. Takaishi K, Iwachido K, Takehana R, Uchiyama M, Ema T. J Am Chem Soc, 2019, 141: 6185–6190

    Article  CAS  PubMed  Google Scholar 

  32. Hassan Z, Spuling E, Knoll DM, Lahann J, Bräse S. Chem Soc Rev, 2018, 47: 6947–6963

    Article  CAS  PubMed  Google Scholar 

  33. Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Sci China Chem, 2021, 64: 2060–2104

    Article  CAS  Google Scholar 

  34. Tsujimoto H, Ha DG, Markopoulos G, Chae HS, Baldo MA, Swager TM. J Am Chem Soc, 2017, 139: 4894–4900

    Article  CAS  PubMed  Google Scholar 

  35. Luo J, Xu X, Mao R, Miao Q. J Am Chem Soc, 2012, 134: 13796–13803

    Article  CAS  PubMed  Google Scholar 

  36. Penty SE, Zwijnenburg MA, Orton GRF, Stachelek P, Pal R, Xie Y, Griffin SL, Barendt TA. J Am Chem Soc, 2022, 144: 12290–12298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mayorga Burrezo P, Jiménez VG, Blasi D, Ratera I, Campana AG, Veciana J. Angew Chem Int Ed, 2019, 58: 16282–16288

    Article  CAS  Google Scholar 

  38. Tang ML, Oh JH, Reichardt AD, Bao Z. J Am Chem Soc, 2009, 131: 3733–3740

    Article  CAS  PubMed  Google Scholar 

  39. Okazaki M, Mizusawa T, Nakabayashi K, Yamashita M, Tajima N, Harada T, Fujiki M, Imai Y. J Photochem Photobiol A, 2016, 331: 115–119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21975061) and Shenzhen Fundamental Research Program (JCYJ20190806142403535, GXWD2020123015542700 320200728150952003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zikai He.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Liu, H., Li, Z. et al. Construction of chiral through-space luminophores via symmetry breaking triggered by sequenced chlorination. Sci. China Chem. 66, 2083–2090 (2023). https://doi.org/10.1007/s11426-023-1560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1560-0

Navigation