Skip to main content
Log in

Cross-linked lipoic acid nanocapsules serve as H2O2 amplifier to strengthen the H2O2-sensitive prodrug activation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The H2O2-triggered prodrug activation represents a hot topic while the low H2O2 level of cancer cells hindered the complete activation of parent drugs and resulted in the poor therapeutic effect. Here, we developed an H2O2 amplifier fabricated by cross-linked lipoic acid nanocapsules (cLANCs), which would selectively elevate the intracellular H2O2 level of cancer cells 3.4-fold higher than that of untreated cancer cells so as to speed up the activation of parent drug from the loaded prodrugs (Pro-5-FU). The cytotoxicity showed that the killing effect of Pro-5-FU loaded in cLANCs (Pro-5-FU@cLANCs) arrived up to 1.6-time higher than that of Pro-5-FU alone against A549 cells, and was even close to free 5-FU. The in vivo anticancer evaluation gave the tumor inhibition rate (TIR) and survival rate (SR) of Pro-5-FU@cLANCs against A549 tumor-bearing nude mice up to 73.1% and 80%, respectively, much higher than those of Pro-5-FU (TIR: 41.2%, SR: 20%) or free 5-FU (TIR: 50.6%, SR: 0%). This nanodrug constructed the first example that utilizes the drug carriers as H2O2 amplifier to strengthen the prodrug activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, Savolainen J. Nat Rev Drug Discov, 2008, 7: 255–270

    Article  CAS  PubMed  Google Scholar 

  2. Rautio J, Meanwell NA, Di L, Hageman MJ. Nat Rev Drug Discov, 2018, 17: 559–587

    Article  CAS  PubMed  Google Scholar 

  3. Sinhababu AK, Thakker DR. Adv Drug Deliver Rev, 1996, 19: 241–273

    Article  CAS  Google Scholar 

  4. Ding C, Chen C, Zeng X, Chen H, Zhao Y. ACS Nano, 2022, 16: 13513–13553

    Article  CAS  PubMed  Google Scholar 

  5. Zhang L, Zhu L, Tang L, Xie J, Gao Y, Yu C, Shang K, Han H, Liu C, Lu Y. Adv Sci, 2023, 10: 2205246

    Article  CAS  Google Scholar 

  6. Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Chem Soc Rev, 2022, 51: 6652–6703

    Article  CAS  PubMed  Google Scholar 

  7. Jeon I, Yang S, Shim M, Kim K. Nano Today, 2020, 32: 100851

    Article  Google Scholar 

  8. Wang P, Gong Q, Hu J, Li X, Zhang X. J Med Chem, 2020, 64: 298–325

    Article  PubMed  Google Scholar 

  9. Xiang J, Liu J, Liu X, Zhou Q, Zhao Z, Piao Y, Shao S, Zhou Z, Tang J, Shen Y. J Control Release, 2022, 348: 444–455

    Article  CAS  PubMed  Google Scholar 

  10. Ye H, Zhou Y, Liu X, Chen Y, Duan S, Zhu R, Liu Y, Yin L. Biomacromolecules, 2019, 20: 2441–2463

    Article  CAS  PubMed  Google Scholar 

  11. Xu X, Saw PE, Tao W, Li Y, Ji X, Bhasin S, Liu Y, Ayyash D, Rasmussen J, Huo M, Shi J, Farokhzad OC. Adv Mater, 2019, 29: 1700141

    Article  Google Scholar 

  12. Shim MS, Xia Y. Angew Chem, 2013, 125: 7064–7067

    Article  Google Scholar 

  13. Jo S, Kim HS, Won M, Champanhac C, Kim JS, Wurm FR, Landfester K. Adv Funct Mater, 2022, 32: 2200791

    Article  CAS  Google Scholar 

  14. Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, Ma Y, Zhang F, Chen ZY, Chen X. Adv Sci, 2019, 6: 1801986

    Article  Google Scholar 

  15. Peng S, Xiao F, Chen M, Gao H. Adv Sci, 2022, 9: 2103836

    Article  CAS  Google Scholar 

  16. Ma N, Li Y, Xu H, Wang Z, Zhang X. J Am Chem Soc, 2010, 132: 442–443

    Article  CAS  PubMed  Google Scholar 

  17. Meng T, Han J, Zhang P, Hu J, Fu J, Yin J. Chem Sci, 2019, 10: 7156–7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuang Y, Balakrishnan K, Gandhi V, Peng X. J Am Chem Soc, 2011, 133: 19278–19281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Major Jourden J, Cohen S. Angew Chem Int Ed, 2010, 122: 6947–6949

    Article  Google Scholar 

  20. Dong C, Zhou Q, Xiang J, Liu F, Zhou Z, Shen Y. J Control Release, 2020, 321: 529–539

    Article  CAS  PubMed  Google Scholar 

  21. Kim EJ, Bhuniya S, Lee H, Kim HM, Cheong C, Maiti S, Hong KS, Kim JS. J Am Chem Soc, 2014, 136: 13888–13894

    Article  CAS  PubMed  Google Scholar 

  22. Ross SM. Holistic Nurs Pract, 2006, 20: 305–306

    Article  Google Scholar 

  23. Suntres ZE. Pharmacol Res, 2003, 48: 85–591

    Article  Google Scholar 

  24. Xia W, Zeng X, Han X, Liu Y, Cao Y, Yan J, Huang Y. Heart, 2013, 99: A88

    Google Scholar 

  25. Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu RM, Hagen TM. Proc Natl Acad Sci USA, 2004, 101: 3381–3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dörsam B, Fahrer J. Cancer Lett, 2016, 371: 12–19

    Article  PubMed  Google Scholar 

  27. Wenzel U, Nickel A, Daniel H. Apoptosis, 2005, 10: 359–368

    Article  CAS  PubMed  Google Scholar 

  28. Liao C, Dai X, Chen Y, Liu J, Yao Y, Zhang S. Adv Funct Mater, 2019, 29: 1806567

    Article  Google Scholar 

  29. Wang L, Jing P, Tan J, Liao C, Chen Y, Yu Y, Zhang S. Biomaterials, 2021, 273: 120823

    Article  CAS  PubMed  Google Scholar 

  30. Yang F, Chen Y, Zhang J, Liao C, Zhang S. J Mater Chem B, 2021, 9: 1583–1591

    Article  CAS  PubMed  Google Scholar 

  31. Zhou X, Dai X, Tan J, Wu X, Zhou X, Liao C, Zhang S. ACS Appl Mater Interfaces, 2021, 13: 56850–56857

    Article  CAS  PubMed  Google Scholar 

  32. Li B, Liu P, Wu H, Xie X, Chen Z, Zeng F, Wu S. Biomaterials, 2017, 138: 57–68

    Article  CAS  PubMed  Google Scholar 

  33. Yan C, Guo Z, Chi W, Fu W, Abedi SAA, Liu X, Tian H, Zhu WH. Nat Commun, 2021, 12: 3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang J, Wang L, Zhao P, Xiang F, Liu J, Zhang S. ACS Catal, 2018, 8: 5941–5946

    Article  CAS  Google Scholar 

  35. Wang Z, Zhang Y, Ju E, Liu Z, Cao F, Chen Z, Qu X. Nat Commun, 2018, 9: 1–14

    Article  Google Scholar 

  36. Lin LS, Huang T, Song J, Ou XY, Wang Z, Deng H, Tian R, Liu Y, Wang JF, Liu Y, Yu G, Zhou Z, Wang S, Niu G, Yang HH, Chen X. J Am Chem Soc, 2019, 141: 9937–9945

    Article  CAS  PubMed  Google Scholar 

  37. Zhang LL, Feng ZL, Su MX, Jiang XM, Chen X, Wang Y, Li A, Lin LG, Lu JJ. Eur J Pharmacol, 2018, 830: 17–25

    Article  CAS  PubMed  Google Scholar 

  38. Chen Y, Huang J, Zhang S, Gu Z. Chem Mater, 2017, 29: 3083–3091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22201193 and 21975165), the Innovative Research Team Program of Sichuan Province (2021JDTD0015) and the National Natural Science Foundation of Sichuan Province (2023NSFSC1691). We acknowledge the Center of Testing and Analysis, Sichuan University, for the 1H NMR and TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyong Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Jing, P., Xiao, X. et al. Cross-linked lipoic acid nanocapsules serve as H2O2 amplifier to strengthen the H2O2-sensitive prodrug activation. Sci. China Chem. 66, 2654–2663 (2023). https://doi.org/10.1007/s11426-022-1647-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1647-2

Keywords

Navigation