Skip to main content
Log in

Non-noble metal-based catalysts for acetylene semihydrogenation: from thermocatalysis to sustainable catalysis

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Selective semihydrogenation of acetylene in raw olefin streams to ethylene is a key industrial reaction to produce polymer-grade feeds for the manufacture of corresponding polymers. The currently used process in industry is the thermocatalytic acetylene semihydrogenation with pressurized hydrogen and Pd-based catalysts at relatively high temperatures. The high cost of Pd urgently desires the design of non-noble metal-based catalysts. However, non-noble metal-based catalysts commonly require much higher reaction temperatures than Pd-based catalysts because of their poor intrinsic activity. Therefore, aiming at increasing economic efficiency and sustainability, various strategies are explored for developing non-noble metal-based catalysts for thermocatalytic and green acetylene semihydrogenation processes. In this review, we systematically summarize the recent advances in catalytic technology from thermocatalysis to sustainable alternatives, as well as corresponding regulation strategies for designing high-performance non-noble metal-based catalysts. The crucial factors affecting catalytic performance are discussed, and the fundamental structure-performance correlation of catalysts is outlined. Meanwhile, we emphasize current challenging issues and future perspectives for acetylene semihydrogenation. This review will not only promote the rapid exploration of non-noble metal-based catalysts for acetylene semihydrogenation, but also advance the development of sustainable processes like electrocatalysis and photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crespo-Quesada M, Cárdenas-Lizana F, Dessimoz AL, Kiwi-Minsker L. ACS Catal, 2012, 2: 1773–1786

    Article  CAS  Google Scholar 

  2. Torres Galvis HM, de Jong KP. ACS Catal, 2013, 3: 2130–2149

    Article  CAS  Google Scholar 

  3. Garba MD, Jackson SD. Appl Petrochem Res, 2016, 7: 1–8

    Article  Google Scholar 

  4. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH. J Catal, 2002, 209: 275–278

    Article  Google Scholar 

  5. Zhang L, Zhou M, Wang A, Zhang T. Chem Rev, 2020, 120: 683–733

    Article  CAS  PubMed  Google Scholar 

  6. Cui X, Chen K, Xing H, Yang Q, Krishna R, Bao Z, Wu H, Zhou W, Dong X, Han Y, Li B, Ren Q, Zaworotko MJ, Chen B. Science, 2016, 353: 141–144

    Article  CAS  PubMed  Google Scholar 

  7. Suo X, Cui X, Yang L, Xu N, Huang Y, He Y, Dai S, Xing H. Adv Mater, 2020, 32: 1907601

    Article  CAS  Google Scholar 

  8. McCue AJ, Anderson JA. Front Chem Sci Eng, 2015, 9: 142–153

    Article  CAS  Google Scholar 

  9. Rubinson JF, Behymer TD, Mark Jr. B. J Am Chem Soc, 1982, 104: 1224–1229

    Article  CAS  Google Scholar 

  10. Mark Jr. HB, Rubinson JF, Krotine J, Vaughn W, Goldschmidt M. Electrochim Acta, 2000, 45: 4309–4313

    Article  CAS  Google Scholar 

  11. Huang B, Wang T, Yang Z, Qian W, Long J, Zeng G, Lei C. ACS Sustain Chem Eng, 2017, 5: 1668–1674

    Article  CAS  Google Scholar 

  12. Song XL, Du HY, Liang ZH, Zhu ZP, Duan DH, Liu SB. Int J Electrochem Sci, 2013, 8: 6566–6573

    Article  CAS  Google Scholar 

  13. Bai R, Li J, Lin J, Liu Z, Yan C, Zhang L, Zhang J. CCS Chem, 2023, 5: 200–208

    Article  CAS  Google Scholar 

  14. Chang SY, Bu J, Li JJ, Lin J, Liu ZP, Ma WX, Zhang J. Chin Chem Lett, 2022, 34: 107765

    Article  Google Scholar 

  15. An S, Liu Z, Bu J, Lin J, Yao Y, Yan C, Tian W, Zhang J. Angew Chem Int Ed, 2022, 61: e202116370

    CAS  Google Scholar 

  16. Guo Y, Huang Y, Zeng B, Han B, Akri M, Shi M, Zhao Y, Li Q, Su Y, Li L, Jiang Q, Cui YT, Li L, Li R, Qiao B, Zhang T. Nat Commun, 2022, 13: 2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou S, Shang L, Zhao Y, Shi R, Waterhouse GIN, Huang YC, Zheng L, Zhang T. Adv Mater, 2019, 31: 1900509

    Article  Google Scholar 

  18. Kyriakou G, Boucher MB, Jewell AD, Lewis EA, Lawton TJ, Baber AE, Tierney HL, Flytzani-Stephanopoulos M, Sykes ECH. Science, 2012, 335: 1209–1212

    Article  CAS  PubMed  Google Scholar 

  19. Jiang L, Liu K, Hung SF, Zhou L, Qin R, Zhang Q, Liu P, Gu L, Chen HM, Fu G, Zheng N. Nat Nanotechnol, 2020, 15: 848–853

    Article  CAS  PubMed  Google Scholar 

  20. García-Mota M, Gómez-Díaz J, Novell-Leruth G, Vargas-Fuentes C, Bellarosa L, Bridier B, Pérez-Ramírez J, López N. Theor Chem Acc, 2011, 128: 663–673

    Article  Google Scholar 

  21. Wei S, Li A, Liu JC, Li Z, Chen W, Gong Y, Zhang Q, Cheong WC, Wang Y, Zheng L, Xiao H, Chen C, Wang D, Peng Q, Gu L, Han X, Li J, Li Y. Nat Nanotech, 2018, 13: 856–861

    Article  CAS  Google Scholar 

  22. Shao L, Zhang B, Zhang W, Teschner D, Girgsdies F, Schlögl R, Su DS. Chem Eur J, 2012, 18: 14962–14966

    Article  CAS  PubMed  Google Scholar 

  23. Li M, Shen J. ThermoChim Acta, 2001, 379: 45–50

    Article  CAS  Google Scholar 

  24. Hock S, Reichel CV, Zieschang AM, Albert B, Rose M. ACS Sustain Chem Eng, 2021, 9: 16570–16576

    Article  CAS  Google Scholar 

  25. Bridier B, López N, Pérez-Ramírez J. J Catal, 2010, 269: 80–92

    Article  CAS  Google Scholar 

  26. Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK. Science, 2008, 320: 1320–1322

    Article  CAS  PubMed  Google Scholar 

  27. Gu J, Jian M, Huang L, Sun Z, Li A, Pan Y, Yang J, Wen W, Zhou W, Lin Y, Wang HJ, Liu X, Wang L, Shi X, Huang X, Cao L, Chen S, Zheng X, Pan H, Zhu J, Wei S, Li WX, Lu J. Nat Nanotechnol, 2021, 16: 1141–1149

    Article  CAS  PubMed  Google Scholar 

  28. Bridier B, Pérez-Ramírez J. J Am Chem Soc, 2010, 132: 4321–4327

    Article  CAS  PubMed  Google Scholar 

  29. Kojima T, Kameoka S, Fujii S, Ueda S, Tsai AP. Sci Adv, 2018, 4: eaat6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spanjers CS, Held JT, Jones MJ, Stanley DD, Sim RS, Janik MJ, Rioux RM. J Catal, 2014, 316: 164–173

    Article  CAS  Google Scholar 

  31. Liu Y, Liu X, Feng Q, He D, Zhang L, Lian C, Shen R, Zhao G, Ji Y, Wang D, Zhou G, Li Y. Adv Mater, 2016, 28: 4747–4754

    Article  CAS  PubMed  Google Scholar 

  32. Cao Y, Zhang H, Ji S, Sui Z, Jiang Z, Wang D, Zaera F, Zhou X, Duan X, Li Y. Angew Chem Int Ed, 2020, 59: 11647–11652

    Article  CAS  Google Scholar 

  33. Ge X, Dou M, Cao Y, Liu X, Yuwen Q, Zhang J, Qian G, Gong X, Zhou X, Chen L, Yuan W, Duan X. Nat Commun, 2022, 13: 5534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Armbrüster M, Kovnir K, Friedrich M, Teschner D, Wowsnick G, Hahne M, Gille P, Szentmiklósi L, Feuerbacher M, Heggen M, Girgsdies F, Rosenthal D, Schlögl R, Grin Y. Nat Mater, 2012, 11: 690–693

    Article  PubMed  Google Scholar 

  35. Ma J, Xing F, Nakaya Y, Shimizu KI, Furukawa S. Angew Chem Int Ed, 2022, 61: e202200889

    CAS  Google Scholar 

  36. Dai X, Chen Z, Yao T, Zheng L, Lin Y, Liu W, Ju H, Zhu J, Hong X, Wei S, Wu Y, Li Y. Chem Commun, 2017, 53: 11568–11571

    Article  CAS  Google Scholar 

  37. Zhuo HY, Yu X, Yu Q, Xiao H, Zhang X, Li J. Sci China Mater, 2020, 63: 1741–1749

    Article  CAS  Google Scholar 

  38. Chai Y, Wu G, Liu X, Ren Y, Dai W, Wang C, Xie Z, Guan N, Li L. J Am Chem Soc, 2019, 141: 9920–9927

    Article  CAS  PubMed  Google Scholar 

  39. Fu B, McCue AJ, Liu Y, Weng S, Song Y, He Y, Feng J, Li D. ACS Catal, 2021, 12: 607–615

    Article  Google Scholar 

  40. Huang F, Deng Y, Chen Y, Cai X, Peng M, Jia Z, Xie J, Xiao D, Wen X, Wang N, Jiang Z, Liu H, Ma D. Nat Commun, 2019, 10: 4431

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shi X, Lin Y, Huang L, Sun Z, Yang Y, Zhou X, Vovk E, Liu X, Huang X, Sun M, Wei S, Lu J. ACS Catal, 2020, 10: 3495–3504

    Article  CAS  Google Scholar 

  42. Fu F, Liu Y, Li Y, Fu B, Zheng L, Feng J, Li D. ACS Catal, 2021, 11: 11117–11128

    Article  CAS  Google Scholar 

  43. Wang Y, Liu B, Lan X, Wang T. ACS Catal, 2021, 11: 10257–10266

    Article  CAS  Google Scholar 

  44. Niu Y, Huang X, Wang Y, Xu M, Chen J, Xu S, Willinger MG, Zhang W, Wei M, Zhang B. Nat Commun, 2020, 11: 3324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ge X, Ren Z, Cao Y, Liu X, Zhang J, Qian G, Gong X, Chen L, Zhou X, Yuan W, Duan X. J Mater Chem A, 2022, 10: 19722–19731

    Article  CAS  Google Scholar 

  46. Lu C, Zeng A, Wang Y, Wang A. ACS Omega, 2021, 6: 3363–3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Kang L. Catalysts, 2020, 10: 115

    Article  Google Scholar 

  48. Hou C, Kang L, Zhu M. Molecules, 2022, 27: 5437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou H, Li B, Fu H, Zhao X, Zhang M, Wang X, Liu Y, Yang Z, Lou X. ACS Sustain Chem Eng, 2022, 10: 4849–4861

    Article  CAS  Google Scholar 

  50. Durante C. Nat Catal, 2021, 4: 537–538

    Article  CAS  Google Scholar 

  51. Otsuka K, Yagi T. J Catal, 1994, 145: 289–294

    Article  CAS  Google Scholar 

  52. Huang B, Durante C, Isse AA, Gennaro A. Electrochem Commun, 2013, 34: 90–93

    Article  Google Scholar 

  53. Wang S, Uwakwe K, Yu L, Ye J, Zhu Y, Hu J, Chen R, Zhang Z, Zhou Z, Li J, Xie Z, Deng D. Nat Commun, 2021, 12: 7072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bu J, Liu Z, Ma W, Zhang L, Wang T, Zhang H, Zhang Q, Feng X, Zhang J. Nat Catal, 2021, 4: 557–564

    Article  CAS  Google Scholar 

  55. Shi R, Wang Z, Zhao Y, Waterhouse GIN, Li Z, Zhang B, Sun Z, Xia C, Wang H, Zhang T. Nat Catal, 2021, 4: 565–574

    Article  CAS  Google Scholar 

  56. Chen Z, Cai C, Wang T. J Phys Chem C, 2022, 126: 3037–3042

    Article  CAS  Google Scholar 

  57. Zhang L, Chen Z, Liu Z, Bu J, Ma W, Yan C, Bai R, Lin J, Zhang Q, Liu J, Wang T, Zhang J. Nat Commun, 2021, 12: 6574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li J, Guo Y, Chang S, Lin J, Wang Y, Liu Z, Wu Y, Zhang J. Small, 2023, 19: 2205845

    Article  CAS  Google Scholar 

  59. Ma W, Chen Z, Bu J, Liu Z, Li J, Yan C, Cheng L, Zhang L, Zhang H, Zhang J, Wang T, Zhang J. J Mater Chem A, 2022, 10: 6122–6128

    Article  CAS  Google Scholar 

  60. Liu Z, Chen Z, Bu J, Ma W, Zhang L, Zhong H, Cheng L, Li S, Wang T, Zhang J. Chem Eng J, 2022, 431: 134129

    Article  CAS  Google Scholar 

  61. Arcudi F, Đorđević L, Schweitzer N, Stupp SI, Weiss EA. Nat Chem, 2022, 14: 1007–1012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22005245, 52101271), the Fundamental Research Funds for the Central Universities (G2022KY0606, G2020KY05306, G2022KY05111), Guangdong Basic and Applied Basic Research Foundation (2020A1515111017), the Natural Science Foundation of Shaanxi Province (2021JQ–094), and the fellowship of China Postdoctoral Science Foundation (2021M692619).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Lin, J., Liu, Z. et al. Non-noble metal-based catalysts for acetylene semihydrogenation: from thermocatalysis to sustainable catalysis. Sci. China Chem. 66, 1963–1974 (2023). https://doi.org/10.1007/s11426-022-1597-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1597-y

Navigation