Skip to main content
Log in

Functionalizing the interfacial double layer to enable uniform zinc deposition

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Due to the unsatisfactory electrode/electrolyte interface, the metallic Zn dendrites and corrosion are easily induced, severely hindering the applications of zinc-ion batteries (ZIBs). Herein, a strategy that engineers the interfacial double layer by an extremely low concentration of sulfolane is proposed to tune the Zn stripping/plating behavior. It is revealed that the highly-polar sulfolane can predominately occupy the inner Helmholtz layer over water, and then regulate the upcoming Zn2+ to directly deposit downward. Simultaneously, the widened Helmholtz layer can weaken the electric field intensity, which will generate more nucleation sites and reduce the nuclei radius, thereby promoting uniform zinc deposition as well. Moreover, corrosion byproducts can be inhibited since fewer water molecules can contact the Zn electrodes. Consequently, the battery performance can be naturally optimized. With an optimum amount of sulfolane, the Zn∥Zn battery can operate for more than 1,100 h under 1 mA cm−2 and 1 mAh cm−2. And the as-constructed Zn∥NaV3O8·1.5H2O battery demonstrates considerably higher cycling stability than that without sulfolane. Overall, this work has provided a deep insight into constructing a functional interfacial double layer to regulate zinc deposition, which can also act as a reference for other metal-based batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Nat Energy, 2021, 6: 123–134

    CAS  Google Scholar 

  2. Zhang Q, Luan J, Fu L, Wu S, Tang Y, Ji X, Wang H. Angew Chem, 2019, 131: 15988–15994

    Google Scholar 

  3. Li Y, Wu P, Zhong W, Xie C, Xie Y, Zhang Q, Sun D, Tang Y, Wang H. Energy Environ Sci, 2021, 14: 5563–5571

    CAS  Google Scholar 

  4. He Y, Liu M, Chen S, Zhang J. Sci China Chem, 2022, 65: 391–398

    CAS  Google Scholar 

  5. Qin Y, Liu P, Zhang Q, Wang Q, Sun D, Tang Y, Ren Y, Wang H. Small, 2020, 16: 2003106

    CAS  Google Scholar 

  6. Xie C, Zhang Q, Yang Z, Ji H, Li Y, Li H, Fu L, Huang D, Tang Y, Wang H. Chin Chem Lett, 2022, 33: 2653–2657

    CAS  Google Scholar 

  7. Yang Z, Li W, Zhang Q, Xie C, Ji H, Tang Y, Li Y, Wang H. Mater Today Energy, 2022, 28: 101076

    CAS  Google Scholar 

  8. Wang C, Sun L, Li M, Zhou L, Cheng Y, Ao X, Zhang X, Wang L, Tian B, Fan HJ. Sci China Chem, 2022, 65: 399–407

    CAS  Google Scholar 

  9. Sun P, Ma L, Zhou W, Qiu M, Wang Z, Chao D, Mai W. Angew Chem, 2021, 133: 18395–18403

    Google Scholar 

  10. Qin R, Wang Y, Zhang M, Wang Y, Ding S, Song A, Yi H, Yang L, Song Y, Cui Y, Liu J, Wang Z, Li S, Zhao Q, Pan F. Nano Energy, 2021, 80: 105478

    CAS  Google Scholar 

  11. Hao J, Yuan L, Ye C, Chao D, Davey K, Guo Z, Qiao S-. Angew Chem Int Ed, 2021, 60: 7366–7375

    CAS  Google Scholar 

  12. Shang Y, Kumar P, Musso T, Mittal U, Du Q, Liang X, Kundu D. Adv Funct Mater, 2022, 32: 2200606

    CAS  Google Scholar 

  13. Nakamura M, Sato N, Hoshi N, Sakata O. ChemPhysChem, 2011, 12: 1430–1434

    CAS  PubMed  Google Scholar 

  14. Su YZ, Fu YC, Wei YM, Yan JW, Mao BW. ChemPhysChem, 2010, 11: 2764–2778

    CAS  PubMed  Google Scholar 

  15. Stojek Z. The electrical double layer and its structure. In: The Electrical Double Layer and its Structure, Amsterdam: Elsevier, 2010: 3–9

    Google Scholar 

  16. Li R, Li M, Chao Y, Guo J, Xu G, Li B, Liu Z, Yang C, Yan Y. Energy Storage Mater, 2022, 46: 605–612

    Google Scholar 

  17. Yang Z, Zhang Q, Xie C, Li Y, Li W, Wu T, Tang Y, Wang H. Energy Storage Mater, 2022, 47: 319–326

    Google Scholar 

  18. Gonella G, Backus EHG, Nagata Y, Bonthuis DJ, Loche P, Schlaich A, Netz RR, Kühnle A, McCrum IT, Koper MTM, Wolf M, Winter B, Meijer G, Campen RK, Bonn M. Nat Rev Chem, 2021, 5: 466–485

    CAS  PubMed  Google Scholar 

  19. Tilstam U. Org Process Res Dev, 2012, 16: 1273–1278

    CAS  Google Scholar 

  20. Gregory JK, Clary DC, Liu K, Brown MG, Saykally RJ. Science, 1997, 275: 814–817

    CAS  PubMed  Google Scholar 

  21. Szymański J, Patkowski A, Wilk A, Garstecki P, Holyst R. J Phys Chem B, 2006, 110: 25593–25597

    PubMed  Google Scholar 

  22. Shannon RD. Acta Cryst A, 1976, 32: 751–767

    Google Scholar 

  23. Gschwend GC, Girault HH. Chem Sci, 2020, 11: 10304–10312

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie C, Yang Z, Zhang Q, Ji H, Li Y, Wu T, Li W, Wu P, Wang H. Research, 2022, 2022: 9841343

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Griffin JM, Forse AC, Tsai WY, Taberna PL, Simon P, Grey CP. Nat Mater, 2015, 14: 812–819

    CAS  PubMed  Google Scholar 

  26. Wu J. Chem Rev, 2022, 122: 10821–10859

    CAS  PubMed  Google Scholar 

  27. Do DD, Junpirom S, Do HD. Carbon, 2009, 47: 1466–1473

    CAS  Google Scholar 

  28. Yoon S, Lee CW, Oh SM. J Power Sources, 2010, 195: 4391–4399

    CAS  Google Scholar 

  29. Wang LX, Zhang M, Sun C, Yin LX, Kang B, Xu JJ, Chen HY. Angew Chem Int Ed, 2022, 61: e202117177

    CAS  Google Scholar 

  30. Macdonald D. Transient Techniques in Electrochemistry. Berlin: Springer Science & Business Media, 2012: 69–116

    Google Scholar 

  31. Prentice G. Electrochemical engineering In: Encyclopedia of Physical Science and Technology (Third Edition). New York: Academic Press, 2003: 143–159

    Google Scholar 

  32. Lockett V, Horne M, Sedev R, Rodopoulos T, Ralston J. Phys Chem Chem Phys, 2010, 12: 12499–12512

    CAS  PubMed  Google Scholar 

  33. Meng Q, Zhao R, Cao P, Bai Q, Tang J, Liu G, Zhou X, Yang J. Chem Eng J, 2022, 447: 137471

    CAS  Google Scholar 

  34. Chaudhari A, Ahire S, Mehrotrac SC. J Mol Liquids, 2001, 94: 17–25

    CAS  Google Scholar 

  35. Machmudah S, Kanda H, Goto M. Water Extraction of Bioactive Compounds. In: Hydrolysis of Biopolymers in Near-critical and Subcritical Water. Amsterdam: Elsevier, 2017: 69–107

    Google Scholar 

  36. Wei T, Zhang X, Ren Y, Wang Y, Li Z, Zhang H, Hu L. Chem Eng J, 2023, 457: 141272

    CAS  Google Scholar 

  37. Zhao Z, Zhao J, Hu Z, Li J, Li J, Zhang Y, Wang C, Cui G. Energy Environ Sci, 2019, 12: 1938–1949

    CAS  Google Scholar 

  38. Zhao J, Zhang J, Yang W, Chen B, Zhao Z, Qiu H, Dong S, Zhou X, Cui G, Chen L. Nano Energy, 2019, 57: 625–634

    CAS  Google Scholar 

  39. Xie C, Li Y, Wang Q, Sun D, Tang Y, Wang H. Carbon Energy, 2020, 2: 540–560

    CAS  Google Scholar 

  40. Imbeaux JC, Savéant JM. J Electroanal Chem Interfacial Electrochem, 1970, 28: 325–338

    Google Scholar 

  41. Noelle DJ, Wang M, Le AV, Shi Y, Qiao Y. Appl Energy, 2018, 212: 796–808

    CAS  Google Scholar 

  42. Cao L, Li D, Hu E, Xu J, Deng T, Ma L, Wang Y, Yang XQ, Wang C. J Am Chem Soc, 2020, 142: 21404–21409

    CAS  PubMed  Google Scholar 

  43. Hao J, Li B, Li X, Zeng X, Zhang S, Yang F, Liu S, Li D, Wu C, Guo Z. Adv Mater, 2020, 32: 2003021

    CAS  Google Scholar 

  44. Gill V, Guduru PR, Sheldon BW. Int J Solids Struct, 2008, 45: 943–958

    Google Scholar 

  45. Bard AJ, Faulkner LR, White HS. Electrochemical Methods: Fundamentals and Applications. New York: John Wiley & Sons, 2022: 395–572

    Google Scholar 

  46. Sathynarayana S. J Electroanal Chem, 1965, 10: 56–67

    Google Scholar 

  47. Pei A, Zheng G, Shi F, Li Y, Cui Y. Nano Lett, 2017, 17: 1132–1139

    CAS  PubMed  Google Scholar 

  48. Liu H, Zhang Y, Wang C, Glazer JN, Shan Z, Liu N. ACS Appl Mater Interfaces, 2021, 13: 32930–32936

    CAS  PubMed  Google Scholar 

  49. Cao H, Deng S, Tie Z, Tian J, Liu L, Niu Z. Sci China Chem, 2022, 65: 1725–1732

    CAS  Google Scholar 

  50. Liu DS, Zhang Z, Zhang Y, Ye M, Huang S, You S, Du Z, He J, Wen Z, Tang Y, Liu X, Li CC. Angew Chem Int Ed, 2023, 62: e202215385

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by National Nature Science Foundation of China (22272205, 21975289 and U19A2019), Hunan Province Natural Science Foundation (2020JJ5694), Hunan Provincial Science and Technology Plan Project of China (2017TP1001, 2018RS3009 and 2020JJ2042) and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Sun, Liang Fu or Haiyan Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, H., Wu, T. et al. Functionalizing the interfacial double layer to enable uniform zinc deposition. Sci. China Chem. 66, 1844–1853 (2023). https://doi.org/10.1007/s11426-022-1590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1590-y

Keywords

Navigation