Skip to main content
Log in

Triazole backbone ligand in an unprecedented efficient manganese catalyst for use in transfer hydrogenation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Noble metal catalysts are generally expensive, and thus, abundant 3d metals recently received significant attention as catalysts in catalytic hydrogenation. Mn catalysts are widely applied in transfer hydrogenations, but the reported catalyst loadings remain up to three orders of magnitude higher than noble metals. Thus, catalyst consumption should be overcome before 3d metal catalytic systems may be utilized practically in industry. Here, a catalytic system based on novel, scalable triazole N5-ligands coordinated to Mn is presented for use in transfer hydrogenations. Based on pre-activation via dehydrohalogenation, an unprecedented, efficient catalytic system operating via synergistic H-bond auxiliary activation was established. The Mn catalysts are practical at metal concentrations 0.0001 mol%, generating alcohol with turnover number (TON) up to 857,200, thus approaching loadings more conventionally observed in precious-metal-based systems. Notably, using this protocol, several pharmaceuticals may be easily synthesized in one pot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weissermel K, Arpe HJ. Industrial Organic Chemistry. Weinheim: Wiley-VCH, 2003

    Book  Google Scholar 

  2. de Vries JG, Elsevier CJ. The Handbook of Homogeneous Hydrogenation. Weinhem: Wiley-VCH, 2007, Vol. 1

    Google Scholar 

  3. Crabtree RH. Chem Rev, 2015, 115: 127–150

    Article  CAS  PubMed  Google Scholar 

  4. Deng D, Hu B, Yang M, Chen D. Organometallics, 2018, 37: 2386–2394

    Article  CAS  Google Scholar 

  5. Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW. Science, 2010, 330: 1222–1227

    Article  CAS  PubMed  Google Scholar 

  6. Barta K, Ford PC. Acc Chem Res, 2014, 47: 1503–1512

    Article  CAS  PubMed  Google Scholar 

  7. Kumar A, Daw P, Milstein D. Chem Rev, 2022, 122: 385–441

    Article  CAS  PubMed  Google Scholar 

  8. Elangovan S, Topf C, Fischer S, Jiao H, Spannenberg A, Baumann W, Ludwig R, Junge K, Beller M. J Am Chem Soc, 2016, 138: 8809–8814

    Article  CAS  PubMed  Google Scholar 

  9. Kallmeier F, Irrgang T, Dietel T, Kempe R. Angew Chem Int Ed, 2016, 55: 11806–11809

    Article  CAS  Google Scholar 

  10. Widegren MB, Harkness GJ, Slawin AMZ, Cordes DB, Clarke ML. Angew Chem Int Ed, 2017, 56: 5825–5828

    Article  CAS  Google Scholar 

  11. Garbe M, Junge K, Walker S, Wei Z, Jiao H, Spannenberg A, Bachmann S, Scalone M, Beller M. Angew Chem Int Ed, 2017, 56: 11237–11241

    Article  CAS  Google Scholar 

  12. Li YY, Yu SL, Shen WY, Gao JX. Acc Chem Res, 2015, 48: 2587–2598

    Article  CAS  PubMed  Google Scholar 

  13. Wang D, Astruc D. Chem Rev, 2015, 115: 6621–6686

    Article  CAS  PubMed  Google Scholar 

  14. Valyaev DA, Lavigne G, Lugan N. Coord Chem Rev, 2016, 308: 191–235

    Article  CAS  Google Scholar 

  15. Alig L, Fritz M, Schneider S. Chem Rev, 2019, 119: 2681–2751

    Article  CAS  PubMed  Google Scholar 

  16. Irrgang T, Kempe R. Chem Rev, 2019, 119: 2524–2549

    Article  CAS  PubMed  Google Scholar 

  17. Casey CP, Strotman NA, Beetner SE, Johnson JB, Priebe DC, Guzei IA. Organometallics, 2006, 25: 1236–1244

    Article  CAS  Google Scholar 

  18. Bower JF, Skucas E, Patman RL, Krische MJ. J Am Chem Soc, 2007, 129: 15134–15135

    Article  CAS  PubMed  Google Scholar 

  19. Guillena G, Ramón DJ, Yus M. Chem Rev, 2010, 110: 1611–1641

    Article  CAS  PubMed  Google Scholar 

  20. Choi J, MacArthur AHR, Brookhart M, Goldman AS. Chem Rev, 2011, 111: 1761–1779

    Article  CAS  PubMed  Google Scholar 

  21. Crabtree RH. Organometallics, 2011, 30: 17–19

    Article  CAS  Google Scholar 

  22. Marr AC. Catal Sci Technol, 2012, 2: 279–287

    Article  CAS  Google Scholar 

  23. Pan S, Shibata T. ACS Catal, 2013, 3: 704–712

    Article  CAS  Google Scholar 

  24. Obora Y. ACS Catal, 2014, 4: 3972–3981

    Article  CAS  Google Scholar 

  25. Yang Q, Wang Q, Yu Z. Chem Soc Rev, 2015, 44: 2305–2329

    Article  CAS  PubMed  Google Scholar 

  26. Quintard A, Rodriguez J. ChemSusChem, 2016, 9: 28–30

    Article  CAS  PubMed  Google Scholar 

  27. Xie Y, Ben-David Y, Shimon LJW, Milstein D. J Am Chem Soc, 2016, 138: 9077–9080

    Article  CAS  PubMed  Google Scholar 

  28. Langer R, Leitus G, Ben-David Y, Milstein D. Angew Chem Int Ed, 2011, 50: 2120–2124

    Article  CAS  Google Scholar 

  29. Langer R, Iron MA, Konstantinovski L, Diskin-Posner Y, Leitus G, Ben-David Y, Milstein D. Chem Eur J, 2012, 18: 7196–7209

    Article  CAS  PubMed  Google Scholar 

  30. Fleischer S, Zhou S, Junge K, Beller M. Angew Chem Int Ed, 2013, 52: 5120–5124

    Article  CAS  Google Scholar 

  31. Gorgas N, Stöger B, Veiros LF, Pittenauer E, Allmaier G, Kirchner K. Organometallics, 2014, 33: 6905–6914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zell T, Ben-David Y, Milstein D. Catal Sci Technol, 2015, 5: 822–826

    Article  CAS  Google Scholar 

  33. Gorgas N, Stöger B, Veiros LF, Kirchner K. ACS Catal, 2016, 6: 2664–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maji B, Barman M. Synthesis, 2017, 49: 3377–3393

    Article  CAS  Google Scholar 

  35. Garbe M, Junge K, Beller M. Eur J Org Chem, 2017, 2017(30): 4344–4362

    Article  CAS  Google Scholar 

  36. Espinosa-Jalapa NA, Nerush A, Shimon LJW, Leitus G, Avram L, Ben-David Y, Milstein D. Chem Eur J, 2017, 23: 5934–5938

    Article  CAS  PubMed  Google Scholar 

  37. van Putten R, Uslamin EA, Garbe M, Liu C, Gonzalez-de-Castro A, Lutz M, Junge K, Hensen EJM, Beller M, Lefort L, Pidko EA. Angew Chem Int Ed, 2017, 56: 7531–7534

    Article  CAS  Google Scholar 

  38. Papa V, Cabrero-Antonino JR, Alberico E, Spanneberg A, Junge K, Junge H, Beller M. Chem Sci, 2017, 8: 3576–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Glatz M, Stöger B, Himmelbauer D, Veiros LF, Kirchner K. ACS Catal, 2018, 8: 4009–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang W, Chernyshov IY, van Schendel RKA, Weber M, Müller C, Filonenko GA, Pidko EA. Nat Commun, 2021, 12: 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knölker HJ, Baum E, Goesmann H, Klauss R. Angew Chem Int Ed, 1999, 38: 2064–2066

    Article  Google Scholar 

  42. Casey CP, Guan H. J Am Chem Soc, 2007, 129: 5816–5817

    Article  CAS  PubMed  Google Scholar 

  43. Sonnenberg JF, Coombs N, Dube PA, Morris RH. J Am Chem Soc, 2012, 134: 5893–5899

    Article  CAS  PubMed  Google Scholar 

  44. Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M. Science, 2012, 337: 695–699

    Article  CAS  PubMed  Google Scholar 

  45. Zuo W, Lough AJ, Li YF, Morris RH. Science, 2013, 342: 1080–1083

    Article  CAS  PubMed  Google Scholar 

  46. Zhang G, Vasudevan KV, Scott BL, Hanson SK. J Am Chem Soc, 2013, 135: 8668–8681

    Article  CAS  PubMed  Google Scholar 

  47. Gunanathan C, Milstein D. Science, 2013, 341: 1229712

    Article  PubMed  Google Scholar 

  48. Michlik S, Kempe R. Nat Chem, 2013, 5: 140–144

    Article  CAS  PubMed  Google Scholar 

  49. Jeletic MS, Mock MT, Appel AM, Linehan JC. J Am Chem Soc, 2013, 135: 11533–11536

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Yu S, Wu X, Xiao J, Shen W, Dong Z, Gao J. J Am Chem Soc, 2014, 136: 4031–4039

    Article  CAS  PubMed  Google Scholar 

  51. Yan T, Feringa BL, Barta K. Nat Commun, 2014, 5: 5602

    Article  CAS  PubMed  Google Scholar 

  52. Qu S, Dang Y, Song C, Wen M, Huang KW, Wang ZX. J Am Chem Soc, 2014, 136: 4974–4991

    Article  CAS  PubMed  Google Scholar 

  53. Chakraborty S, Dai H, Bhattacharya P, Fairweather NT, Gibson MS, Krause JA, Guan H. J Am Chem Soc, 2014, 136: 7869–7872

    Article  CAS  PubMed  Google Scholar 

  54. Gärtner D, Welther A, Rad BR, Wolf R, Jacobi von Wangelin A. Angew Chem Int Ed, 2014, 53: 3722–3726

    Article  Google Scholar 

  55. Korstanje TJ, Ivar van der Vlugt J, Elsevier CJ, de Bruin B. Science, 2015, 350: 298–302

    Article  CAS  PubMed  Google Scholar 

  56. Deibl N, Kempe R. J Am Chem Soc, 2016, 138: 10786–10789

    Article  CAS  PubMed  Google Scholar 

  57. De Luca L, Mezzetti A. Angew Chem Int Ed, 2017, 56: 11949–11953

    Article  CAS  Google Scholar 

  58. Yuwen J, Chakraborty S, Brennessel WW, Jones WD. ACS Catal, 2017, 7: 3735–3740

    Article  Google Scholar 

  59. Yang W, Chernyshov IY, Weber M, Pidko EA, Filonenko GA. ACS Catal, 2022, 12: 10818–10825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Balaraman E, Khaskin E, Leitus G, Milstein D. Nat Chem, 2013, 5: 122–125

    Article  CAS  PubMed  Google Scholar 

  61. Elangovan S, Garbe M, Jiao H, Spannenberg A, Junge K, Beller M. Angew Chem Int Ed, 2016, 55: 15364–15368

    Article  CAS  Google Scholar 

  62. Mastalir M, Glatz M, Pittenauer E, Allmaier G, Kirchner K. J Am Chem Soc, 2016, 138: 15543–15546

    Article  CAS  PubMed  Google Scholar 

  63. Elangovan S, Neumann J, Sortais JB, Junge K, Darcel C, Beller M. Nat Commun, 2016, 7: 12641

    Article  PubMed  PubMed Central  Google Scholar 

  64. Peña-López M, Piehl P, Elangovan S, Neumann H, Beller M. Angew Chem Int Ed, 2016, 55: 14967–14971

    Article  Google Scholar 

  65. Owen AE, Preiss A, McLuskie A, Gao C, Peters G, Bühl M, Kumar A. ACS Catal, 2022, 12: 6923–6933

    Article  CAS  Google Scholar 

  66. Perez M, Elangovan S, Spannenberg A, Junge K, Beller M. Chem-SusChem, 2017, 10: 83–86

    CAS  Google Scholar 

  67. Deibl N, Kempe R. Angew Chem Int Ed, 2017, 56: 1663–1666

    Article  CAS  Google Scholar 

  68. Mastalir M, Pittenauer E, Allmaier G, Kirchner K. J Am Chem Soc, 2017, 139: 8812–8815

    Article  CAS  PubMed  Google Scholar 

  69. Kumar A, Espinosa-Jalapa NA, Leitus G, Diskin-Posner Y, Avram L, Milstein D. Angew Chem Int Ed, 2017, 56: 14992–14996

    Article  CAS  Google Scholar 

  70. Nguyen DH, Trivelli X, Capet F, Paul JF, Du-meignil F, Gauvin RM. ACS Catal, 2017, 7: 2022–2032

    Article  CAS  Google Scholar 

  71. Chakraborty S, Das UK, Ben-David Y, Milstein D. J Am Chem Soc, 2017, 139: 11710–11713

    Article  CAS  PubMed  Google Scholar 

  72. Kar S, Goeppert A, Kothandaraman J, Prakash GKS. ACS Catal, 2017, 7: 6347–6351

    Article  CAS  Google Scholar 

  73. Bertini F, Glatz M, Gorgas N, Stöger B, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L. Chem Sci, 2017, 8: 5024–5029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zirakzadeh A, de Aguiar SRMM, Stöger B, Widhalm M, Kirchner K. ChemCatChem, 2017, 9: 1744–1748

    Article  CAS  Google Scholar 

  75. Wang Y, Wang M, Li Y, Liu Q. Chem, 2021, 7: 1180–1223

    Article  CAS  Google Scholar 

  76. Waiba S, Maiti M, Maji B. ACS Catal, 2022, 12: 3995–4001

    Article  CAS  Google Scholar 

  77. Kandepi VVKM, Cardoso JMS, Peris E, Royo B. Organometallics, 2010, 29: 2777–2782

    Article  CAS  Google Scholar 

  78. Dubey A, Nencini L, Fayzullin RR, Nervi C, Khusnutdinova JR. ACS Catal, 2017, 7: 3864–3868

    Article  CAS  Google Scholar 

  79. Bruneau-Voisine A, Wang D, Dorcet V, Roisnel T, Darcel C, Sortais JB. Org Lett, 2017, 19: 3656–3659

    Article  CAS  PubMed  Google Scholar 

  80. Martínez-Ferraté O, Werlé C, Franciò G, Leitner W. ChemCatChem, 2018, 10: 4514–4518

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ganguli K, Shee S, Panja D, Kundu S. Dalton Trans, 2019, 48: 7358–7366

    Article  CAS  PubMed  Google Scholar 

  82. Zhang C, Hu B, Chen D, Xia H. Organometallics, 2019, 38: 3218–3226

    Article  CAS  Google Scholar 

  83. Shvydkiy NV, Vyhivskyi O, Nelyubina YV, Perekalin DS. ChemCatChem, 2019, 11: 1602–1605

    Article  CAS  Google Scholar 

  84. Wang L, Lin J, Sun Q, Xia C, Sun W. ACS Catal, 2021, 11: 8033–8041

    Article  CAS  Google Scholar 

  85. Filonenko GA, van Putten R, Hensen EJM, Pidko EA. Chem Soc Rev, 2018, 47: 1459–1483

    Article  CAS  PubMed  Google Scholar 

  86. Liu C, Wang M, Xu Y, Li Y, Liu Q. Angew Chem Int Ed, 2022, 61: e202202814

    CAS  Google Scholar 

  87. Das K, Waiba S, Jana A, Maji B. Chem Soc Rev, 2022, 51: 4386–4464

    Article  CAS  PubMed  Google Scholar 

  88. Torres-Calis A, García JJ. ACS Omega, 2022, 7: 37008–37038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang C, Liang Z, Jia X, Wang M, Zhang G, Hu ML. Chem Commun, 2020, 56: 14215–14218

    Article  CAS  Google Scholar 

  90. See the Supporting Information for details

  91. CCDC: 2204257 (MnN10Br2), 2204258 (MnN10Cl2), 2204256 (D3), and 2204263 (D16) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre viahttp://www.ccdc.cam.ac.uk/data_request/cif

  92. Fu S, Shao Z, Wang Y, Liu Q. J Am Chem Soc, 2017, 139: 11941–11948

    Article  CAS  PubMed  Google Scholar 

  93. Guillena G, Ramón DJ, Yus M. Chem Rev, 2010, 110: 1611–1641

    Article  CAS  PubMed  Google Scholar 

  94. Kallmeier F, Kempe R. Angew Chem Int Ed, 2018, 57: 46–60

    Article  CAS  Google Scholar 

  95. Zhang C, Liang Q, Yang W, Zhang G, Hu M, Zhang G. Green Chem, 2022, 24: 7368–7375

    Article  CAS  Google Scholar 

  96. Zhang J, Chen P, Yuan B, Ji W, Cheng Z, Qiu X. Science, 2013, 342: 611–614

    Article  CAS  PubMed  Google Scholar 

  97. Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J. Adv Funct Mater, 2016, 26: 6279–6287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22002067, 22202228), the Hundred-Talent Program of the Chinese Academy of Sciences, the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (20220052), the Science and Technology Project of Shanxi Province (202103021223457), and the State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences (2021BWZ011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyan Zhang or Guoying Zhang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2022_1576_MOESM1_ESM.pdf

Supporting Information for: Triazole Backbone Ligand in an Unprecedented Efficient Manganese Catalyst for Use in Transfer Hydrogenation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Q., Zhang, C., Wang, F. et al. Triazole backbone ligand in an unprecedented efficient manganese catalyst for use in transfer hydrogenation. Sci. China Chem. 66, 2028–2036 (2023). https://doi.org/10.1007/s11426-022-1576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1576-5

Navigation