Skip to main content
Log in

Post-synthetic metalation of organic cage for enhanced porosity and catalytic performance

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Porous organic cages (POCs) have shown great potential in many applications, and post-synthetic modification (PSM) has been confirmed to be an effective strategy to tailor their structures and related functionalities. However, it is extremely challenging to develop a general platform for simple-to-make functional POCs for advanced applications by PSM method. Herein, we reported that octahedral calix[4]resorcinarene-based hydrazone-linked porous organic cage (HPOC-401) provides an excellent platform for post-synthetic metalation by various transition metal (TM) ions under mild conditions due to the abundance of coordination sites in its skeleton. Such metalated products (HPOC-401-TM) exhibit Brunauer-Emmett-Teller (BET) surface area up to 1,456 m2 g−1, much higher than that of the pristine HPOC-401, which has a BET value of 474 m2 g−1. Moreover, the metalation and porosity increases further influence their gas capture, separation, as well as catalytic performance. For instance, HPOC-401-TM products exhibit higher CO2, H2, and C2 hydrocarbon gas uptake, as well as higher C2H6/C2H4 selectivity than HPOC-401. Moreover, the HPOC-401-TM also shows better catalytic performance in the cycloaddition of CO2 with epoxides compared to HPOC-401. These findings uncover a simple yet effective approach for modifying the porosity characteristics of organic cages, which will undoubtedly expand their future implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang G, Mastalerz M. Chem Soc Rev, 2014, 43: 1934–1947

    CAS  PubMed  Google Scholar 

  2. Hasell T, Cooper AI. Nat Rev Mater, 2016, 1: 16053

    CAS  Google Scholar 

  3. Huang S, Lei Z, Jin Y, Zhang W. Chem Sci, 2021, 12: 9591–9606

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Martínez-Ahumada E, He D, Berryman V, López-Olvera A, Hernandez M, Jancik V, Martis V, Vera MA, Lima E, Parker DJ, Cooper AI, Ibarra IA, Liu M. Angew Chem Int Ed, 2021, 60: 17556–17563

    Google Scholar 

  5. Wang Z, Sikdar N, Wang SQ, Li X, Yu M, Bu XH, Chang Z, Zou X, Chen Y, Cheng P, Yu K, Zaworotko MJ, Zhang Z. J Am Chem Soc, 2019, 141: 9408–9414

    CAS  PubMed  Google Scholar 

  6. Moosa B, Alimi LO, Shkurenko A, Fakim A, Bhatt PM, Zhang G, Eddaoudi M, Khashab NM. Angew Chem Int Ed, 2020, 59: 21367–21371

    CAS  Google Scholar 

  7. Ding Y, Alimi LO, Moosa B, Maaliki C, Jacquemin J, Huang F, Khashab NM. Chem Sci, 2021, 12: 5315–5318

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao X, Liu Y, Zhang Z-, Wang Y, Jia X, Li C. Angew Chem Int Ed, 2021, 60: 17904–17909

    CAS  Google Scholar 

  9. Sun JK, Zhan WW, Akita T, Xu Q. J Am Chem Soc, 2015, 137: 7063–7066

    CAS  PubMed  Google Scholar 

  10. Liu C, Liu K, Wang C, Liu H, Wang H, Su H, Li X, Chen B, Jiang J. Nat Commun, 2020, 11: 1047

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Duan H, Cao F, Hao H, Bian H, Cao L. ACS Appl Mater Interfaces, 2021, 13: 16837–16845

    CAS  PubMed  Google Scholar 

  12. Qu H, Wang Y, Li Z, Wang X, Fang H, Tian Z, Cao X. J Am Chem Soc, 2017, 139: 18142–18145

    CAS  PubMed  Google Scholar 

  13. Jiao T, Chen L, Yang D, Li X, Wu G, Zeng P, Zhou A, Yin Q, Pan Y, Wu B, Hong X, Kong X, Lynch VM, Sessler JL, Li H. Angew Chem Int Ed, 2017, 56: 14545–14550

    CAS  Google Scholar 

  14. Zhang C, Wang Z, Tan L, Zhai TL, Wang S, Tan B, Zheng YS, Yang XL, Xu HB. Angew Chem Int Ed, 2015, 54: 9244–9248

    CAS  Google Scholar 

  15. Luo D, He Y, Tian J, Sessler JL, Chi X. J Am Chem Soc, 2022, 144: 113–117

    CAS  PubMed  Google Scholar 

  16. Hu Y, Yao J, Xu Z, Wang Z, Li L, Su SJ, Ma D, Huang F. Sci China Chem, 2020, 63: 897–903

    CAS  Google Scholar 

  17. Yu C, Yang P, Zhu X, Wang Y. Sci China Chem, 2022, 65: 858–862

    CAS  Google Scholar 

  18. Hua M, Wang S, Gong Y, Wei J, Yang Z, Sun J-. Angew Chem Int Ed, 2021, 60: 12490–12497

    CAS  Google Scholar 

  19. Jiao T, Qu H, Tong L, Cao X, Li H. Angew Chem Int Ed, 2021, 60: 9852–9858

    CAS  Google Scholar 

  20. Cheng L, Tian P, Li Q, Li A, Cao L. CCS Chem, 2022, 4: 2914–2920

    CAS  Google Scholar 

  21. Liu X, Zhu G, He D, Gu L, Shen P, Cui G, Wang S, Shi Z, Miyajima D, Wang S, Zhang S. CCS Chem, 2022, 4: 2420–2428

    CAS  Google Scholar 

  22. Hu QP, Zhou H, Huang TY, Ao YF, Wang DX, Wang QQ. J Am Chem Soc, 2022, 144: 6180–6184

    CAS  PubMed  Google Scholar 

  23. Tozawa T, Jones JTA, Swamy SI, Jiang S, Adams DJ, Shakespeare S, Clowes R, Bradshaw D, Hasell T, Chong SY, Tang C, Thompson S, Parker J, Trewin A, Bacsa J, Slawin AMZ, Steiner A, Cooper AI. Nat Mater, 2009, 8: 973–978

    CAS  PubMed  Google Scholar 

  24. Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Chem Rev, 2022, 122: 13636–13708

    PubMed  PubMed Central  Google Scholar 

  25. Hu D, Zhang J, Liu M. Chem Commun, 2022, 58: 11333–11346

    CAS  Google Scholar 

  26. Wang H, Jin Y, Sun N, Zhang W, Jiang J. Chem Soc Rev, 2021, 50: 8874–8886

    CAS  PubMed  Google Scholar 

  27. Deegan MM, Bhattacharjee R, Caratzoulas S, Bloch ED. Inorg Chem, 2021, 60: 7044–7050

    CAS  PubMed  Google Scholar 

  28. Liu M, Little MA, Jelfs KE, Jones JTA, Schmidtmann M, Chong SY, Hasell T, Cooper AI. J Am Chem Soc, 2014, 136: 7583–7586

    CAS  PubMed  Google Scholar 

  29. Bhat AS, Elbert SM, Zhang W-, Rominger F, Dieckmann M, Schröder RR, Mastalerz M. Angew Chem Int Ed, 2019, 58: 8819–8823

    CAS  Google Scholar 

  30. Alexandre P-, Zhang W-, Rominger F, Elbert SM, Schröder RR, Mastalerz M. Angew Chem Int Ed, 2020, 59: 19675–19679

    CAS  Google Scholar 

  31. Yang X, Sun JK, Kitta M, Pang H, Xu Q. Nat Catal, 2018, 1: 214–220

    CAS  Google Scholar 

  32. Smith PT, Benke BP, Cao Z, Kim Y, Nichols EM, Kim K, Chang CJ. Angew Chem Int Ed, 2018, 57: 9684–9688

    CAS  Google Scholar 

  33. Liu M, Zhang L, Little MA, Kapil V, Ceriotti M, Yang S, Ding L, Holden DL, Balderas-Xicohténcatl R, He D, Clowes R, Chong SY, Schütz G, Chen L, Hirscher M, Cooper AI. Science, 2019, 366: 613–620

    CAS  PubMed  Google Scholar 

  34. MacGillivray LR, Atwood JL. Nature, 1997, 389: 469–472

    CAS  Google Scholar 

  35. Cavarzan A, Scarso A, Sgarbossa P, Strukul G, Reek JNH. J Am Chem Soc, 2011, 133: 2848–2851

    CAS  PubMed  Google Scholar 

  36. Kane CM, Ugono O, Barbour LJ, Holman KT. Chem Mater, 2015, 27: 7337–7354

    CAS  Google Scholar 

  37. Skala LP, Yang A, Klemes MJ, Xiao L, Dichtel WR. J Am Chem Soc, 2019, 141: 13315–13319

    CAS  PubMed  Google Scholar 

  38. Zhang Q, Rinkel J, Goldfuss B, Dickschat JS, Tiefenbacher K. Nat Catal, 2018, 1: 609–615

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pei WY, Xu G, Yang J, Wu H, Chen B, Zhou W, Ma JF. J Am Chem Soc, 2017, 139: 7648–7656

    CAS  PubMed  Google Scholar 

  40. Su K, Wang W, Du S, Ji C, Zhou M, Yuan D. J Am Chem Soc, 2020, 142: 18060–18072

    CAS  PubMed  Google Scholar 

  41. Su K, Wang W, Du S, Ji C, Yuan D. Nat Commun, 2021, 12: 3703

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang W, Su K, El-Sayed ESM, Yang M, Yuan D. ACS Appl Mater Interfaces, 2021, 13: 24042–24050

    CAS  PubMed  Google Scholar 

  43. Yang M, Qiu F M. El-Sayed ES, Wang W, Du S, Su K, Yuan D. Chem Sci, 2021, 12: 13307–13315

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang X, Su K, Mohamed AGA, Liu C, Sun Q, Yuan D, Wang Y, Xue W, Wang Y. Energy Environ Sci, 2022, 15: 780–785

    CAS  Google Scholar 

  45. Yang M, Wang W, Su K, Yuan D. Chem Res Chin Univ, 2022, 38: 428–432

    CAS  Google Scholar 

  46. Xu N, Su K, El-Sayed ESM, Ju Z, Yuan D. Chem Sci, 2022, 13: 3582–3588

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Azarkish M, Sedaghat T. Chin Chem Lett, 2012, 23: 1063–1066

    CAS  Google Scholar 

  48. Chen G, Lan HH, Cai SL, Sun B, Li XL, He ZH, Zheng SR, Fan J, Liu Y, Zhang WG. ACS Appl Mater Interfaces, 2019, 11: 12830–12837

    CAS  PubMed  Google Scholar 

  49. Kundu T, Wang J, Cheng Y, Du Y, Qian Y, Liu G, Zhao D. Dalton Trans, 2018, 47: 13824–13829

    CAS  PubMed  Google Scholar 

  50. Grajda M, Wierzbicki M, Cmoch P, Szumna A. J Org Chem, 2013, 78: 11597–11601

    CAS  PubMed  Google Scholar 

  51. Su K, Wu M, Yuan D, Hong M. Nat Commun, 2018, 9: 4941

    PubMed  PubMed Central  Google Scholar 

  52. He YP, Yuan LB, Chen GH, Lin QP, Wang F, Zhang L, Zhang J. J Am Chem Soc, 2017, 139: 16845–16851

    CAS  PubMed  Google Scholar 

  53. Gosselin AJ, Rowland CA, Bloch ED. Chem Rev, 2020, 120: 8987–9014

    CAS  PubMed  Google Scholar 

  54. Zhang L, Xiang L, Hang C, Liu W, Huang W, Pan Y. Angew Chem Int Ed, 2017, 56: 7787–7791

    CAS  Google Scholar 

  55. He D, Clowes R, Little MA, Liu M, Cooper AI. Chem Commun, 2021, 57: 6141–6144

    CAS  Google Scholar 

  56. Dai FR, Sambasivam U, Hammerstrom AJ, Wang Z. J Am Chem Soc, 2014, 136: 7480–7491

    CAS  PubMed  Google Scholar 

  57. Avellaneda A, Valente P, Burgun A, Evans JD, Markwell-Heys AW, Rankine D, Nielsen DJ, Hill MR, Sumby CJ, Doonan CJ. Angew Chem Int Ed, 2013, 52: 3746–3749

    CAS  Google Scholar 

  58. Ma H, Zhai TL, Wang Z, Cheng G, Tan B, Zhang C. RSC Adv, 2020, 10: 9088–9092

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jones JTA, Holden D, Mitra T, Hasell T, Adams DJ, Jelfs KE, Trewin A, Willock DJ, Day GM, Bacsa J, Steiner A, Cooper AI. Angew Chem Int Ed, 2011, 50: 749–753

    CAS  Google Scholar 

  60. Li L, Lin RB, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B. Science, 2018, 362: 443–446

    CAS  PubMed  Google Scholar 

  61. Schneider MW, Oppel IM, Ott H, Lechner LG, Hauswald HJS, Stoll R, Mastalerz M. Chem Eur J, 2012, 18: 836–847

    CAS  PubMed  Google Scholar 

  62. Zhang Y, Su K, Hong Z, Han Z, Yuan D. Ind Eng Chem Res, 2020, 59: 7247–7254

    CAS  Google Scholar 

  63. Wu Q-J, Liang J, Huang Y-B, Cao R. Acc Chem Res, 2022, doi: 64

  64. Chen F, Shen K, Chen L, Li Y. Sci China Chem, 2022, 65: 1411–1419

    CAS  Google Scholar 

  65. Shi Y, Zhao J, Xu H, Hou SL, Zhao B. Sci China Chem, 2021, 64: 1316–1322

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22071244), the Youth Innovation Promotion Association CAS (2022305), the Natural Science Foundation of Fujian Province of China (2022J01503, 2020J05087) and the China Postdoctoral Science Foundation (2020M671954).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kongzhao Su or Daqiang Yuan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Chen, X., Xie, Y. et al. Post-synthetic metalation of organic cage for enhanced porosity and catalytic performance. Sci. China Chem. 66, 1763–1770 (2023). https://doi.org/10.1007/s11426-022-1562-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1562-8

Keywords

Navigation