Skip to main content
Log in

Aromatic and olefinic C-H alkenylation by catalysis with spirocyclic NHC Ru(IV) pincer complex

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Catalyst innovation lies at the heart of transition-metal-catalyzed reaction development. In this article, we have explored the C(sp2)—H alkenylation activity with novel spirocyclic N-heterocyclic carbene (NHC)-based cyclometalated ruthenium pincer catalyst system, SNRu-X. After screening catalyst and condition, a high valent Ru(IV) dioxide (X = O2) species has demonstrated superior reactivity in the catalytic alkenylation of aromatic and olefinic C-H bonds with unactivated alkenyl bromides and triflates. This reaction has achieved the easy construction of a wide range of (hetero)aromatic alkenes and dienes, in good to excellent yields with exclusive selectivity. Preliminary mechanistic studies indicate that this reaction may proceed through a single electron transfer (SET) triggered oxidative addition, by doing so, providing valuable complementary to classical alke-nylation reactions that are dependent on activated alkenyl precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elsby MR, Baker RT. Chem Soc Rev, 2020, 49: 8933–8987

    Article  CAS  PubMed  Google Scholar 

  2. Ibáñez S, Poyatos M, Peris E. Acc Chem Res, 2020, 53: 1401–1413

    Article  PubMed  Google Scholar 

  3. Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat Rev Methods Primers, 2021, 1: 43

    Article  CAS  Google Scholar 

  4. Ott JC, Bürgy D, Guan H, Gade LH. Acc Chem Res, 2022, 55: 857–868

    Article  CAS  PubMed  Google Scholar 

  5. Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Chem Rev, 2022, 122: 3996–4090

    Article  CAS  PubMed  Google Scholar 

  6. Hartwig JF. Acc Chem Res, 2012, 45: 864–873

    Article  CAS  PubMed  Google Scholar 

  7. Guisado-Barrios G, Soleilhavoup M, Bertrand G. Acc Chem Res, 2018, 51: 3236–3244

    Article  CAS  PubMed  Google Scholar 

  8. Soleilhavoup M, Bertrand G. Chem, 2020, 6: 1275–1282

    Article  CAS  Google Scholar 

  9. Jazzar R, Soleilhavoup M, Bertrand G. Chem Rev, 2020, 120: 4141–4168

    Article  CAS  PubMed  Google Scholar 

  10. Yazdani S, Junor GP, Peltier JL, Gembicky M, Jazzar R, Grotjahn DB, Bertrand G. ACS Catal, 2020, 10: 5190–5201

    Article  CAS  Google Scholar 

  11. Gao Y, Kim N, Mendoza SD, Yazdani S, Faria Vieira A, Liu M, Kendrick IV A, Grotjahn DB, Bertrand G, Jazzar R, Engle KM. ACS Catal, 2022, 12: 7243–7247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Huang Z, Liu G, Huang Z. Acc Chem Res, 2022, 55: 2148–2161

    Article  CAS  PubMed  Google Scholar 

  13. Yang BM, Xiang K, Tu YQ, Zhang SH, Yang DT, Wang SH, Zhang FM. Chem Commun, 2014, 50: 7163–7165

    Article  CAS  Google Scholar 

  14. Yan ZB, Peng M, Chen QL, Lu K, Tu YQ, Dai KL, Zhang FM, Zhang XM. Chem Sci, 2021, 12: 9748–9753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dai K, Chen Q, Xie W, Lu K, Yan Z, Peng M, Li C, Tu Y, Ding T. Angew Chem Int Ed, 2022, 61: e202206446

    Article  CAS  Google Scholar 

  16. Palladium, Iridium, Rhodium and Ruthenium, Monthly Average Prices between 1st December 2017 and 1st December 2022. Johnson Matthey Precious Metals Management Home Page. http://www.platinum.matthey.com/prices/price-charts (accessed on 2022-12-15)

  17. Arockiam PB, Bruneau C, Dixneuf PH. Chem Rev, 2012, 112: 5879–5918

    Article  CAS  PubMed  Google Scholar 

  18. Leitch JA, Frost CG. Chem Soc Rev, 2017, 46: 7145–7153

    Article  CAS  PubMed  Google Scholar 

  19. Nareddy P, Jordan F, Szostak M. ACS Catal, 2017, 7: 5721–5745

    Article  CAS  Google Scholar 

  20. Korvorapun K, Samanta RC, Rogge T, Ackermann L. Synthesis, 2021, 53: 2911–2946

    Article  CAS  Google Scholar 

  21. Findlay MT, Domingo-Legarda P, McArthur G, Yen A, Larrosa I. Chem Sci, 2022, 13: 3335–3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ackermann L. Org Lett, 2005, 7: 3123–3125

    Article  CAS  PubMed  Google Scholar 

  23. Ackermann L, Born R, Álvarez-Bercedo P. Angew Chem Int Ed, 2007, 46: 6364–6367

    Article  CAS  Google Scholar 

  24. Ackermann L, Vicente R, Potukuchi HK, Pirovano V. Org Lett, 2010, 12: 5032–5035

    Article  CAS  PubMed  Google Scholar 

  25. Kakiuchi F, Kochi T, Mizushima E, Murai S. J Am Chem Soc, 2010, 132: 17741–17750

    Article  CAS  PubMed  Google Scholar 

  26. Saidi O, Marafie J, Ledger AEW, Liu PM, Mahon MF, Kociok-Köhn G, Whittlesey MK, Frost CG. J Am Chem Soc, 2011, 133: 19298–19301

    Article  CAS  PubMed  Google Scholar 

  27. Hofmann N, Ackermann L. J Am Chem Soc, 2013, 135: 5877–5884

    Article  CAS  PubMed  Google Scholar 

  28. Juliá-Hernández F, Simonetti M, Larrosa I. Angew Chem Int Ed, 2013, 52: 11458–11460

    Article  Google Scholar 

  29. Simonetti M, Perry GJP, Cambeiro XC, Juliá-Hernández F, Arokianathar JN, Larrosa I. J Am Chem Soc, 2016, 138: 3596–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simonetti M, Cannas DM, Just-Baringo X, Vitorica-Yrezabal IJ, Larrosa I. Nat Chem, 2018, 10: 724–731

    Article  CAS  PubMed  Google Scholar 

  31. Simonetti M, Kuniyil R, Macgregor SA, Larrosa I. J Am Chem Soc, 2018, 140: 11836–11847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang GW, Wheatley M, Simonetti M, Cannas DM, Larrosa I. Chem, 2020, 6: 1459–1468

    Article  CAS  Google Scholar 

  33. Korvorapun K, Kuniyil R, Ackermann L. ACS Catal, 2020, 10: 435–440

    Article  CAS  Google Scholar 

  34. Korvorapun K, Struwe J, Kuniyil R, Zangarelli A, Casnati A, Waeterschoot M, Ackermann L. Angew Chem Int Ed, 2020, 59: 18103–18109

    Article  CAS  Google Scholar 

  35. Spencer ARA, Korde R, Font M, Larrosa I. Chem Sci, 2020, 11: 4204–4208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sagadevan A, Charitou A, Wang F, Ivanova M, Vuagnat M, Greaney MF. Chem Sci, 2020, 11: 4439–4443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wheatley M, Findlay MT, López-Rodríguez R, Cannas DM, Simonetti M, Larrosa I. Chem Catal, 2021, 1: 691–703

    Article  CAS  Google Scholar 

  38. Liu KKC, Li J, Sakya S. MRMC, 2004, 4: 1105–1125

    Article  CAS  Google Scholar 

  39. Negishi E, Huang Z, Wang G, Mohan S, Wang C, Hattori H. Acc Chem Res, 2008, 41: 1474–1485

    Article  CAS  PubMed  Google Scholar 

  40. Negishi E. Angew Chem Int Ed, 2011, 50: 6738–6764

    Article  CAS  Google Scholar 

  41. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    Article  CAS  PubMed  Google Scholar 

  42. Schipper DJ, Hutchinson M, Fagnou K. J Am Chem Soc, 2010, 132: 6910–6911

    Article  CAS  PubMed  Google Scholar 

  43. Gao K, Lee PS, Fujita T, Yoshikai N. J Am Chem Soc, 2010, 132: 12249–12251

    Article  CAS  PubMed  Google Scholar 

  44. Zhou B, Chen H, Wang C. J Am Chem Soc, 2013, 135: 1264–1267

    Article  CAS  PubMed  Google Scholar 

  45. Halbritter G, Knoch F, Wolski A, Kisch H. Angew Chem Int Ed Engl, 1994, 33: 1603–1605

    Article  Google Scholar 

  46. Arockiam PB, Fischmeister C, Bruneau C, Dixneuf PH. Green Chem, 2011, 13: 3075–3078

    Article  CAS  Google Scholar 

  47. Wang C, Chen H, Wang Z, Chen J, Huang Y. Angew Chem Int Ed, 2012, 51: 7242–7245

    Article  CAS  Google Scholar 

  48. Zhang H, Yang Z, Liu J, Yu X, Wang Q, Wu Y. Org Chem Front, 2019, 6: 967–971

    Article  CAS  Google Scholar 

  49. Zhang J, Lu X, Shen C, Xu L, Ding L, Zhong G. Chem Soc Rev, 2021, 50: 3263–3314

    Article  CAS  PubMed  Google Scholar 

  50. Matsuura Y, Tamura M, Kochi T, Sato M, Chatani N, Kakiuchi F. J Am Chem Soc, 2007, 129: 9858–9859

    Article  CAS  PubMed  Google Scholar 

  51. Ye W, Luo N, Yu Z. Organometallics, 2010, 29: 1049–1052

    Article  CAS  Google Scholar 

  52. Ogiwara Y, Tamura M, Kochi T, Matsuura Y, Chatani N, Kakiuchi F. Organometallics, 2014, 33: 402–420

    Article  CAS  Google Scholar 

  53. Otley KD, Ellman JA. Org Lett, 2015, 17: 1332–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prakash S, Muralirajan K, Cheng CH. Chem Commun, 2015, 51: 13362–13364

    Article  CAS  Google Scholar 

  55. Zhao H, Xu X, Luo Z, Cao L, Li B, Li H, Xu L, Fan Q, Walsh PJ. Chem Sci, 2019, 10: 10089–10096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang X, Zeng Z, Hua Y, Xu B, Shen Y, Xiong J, Qiu H, Wu Y, Hu T, Zhang Y. J Am Chem Soc, 2020, 142: 15585–15594

    Article  CAS  PubMed  Google Scholar 

  57. Herein, we refer styrene halides (possessing a conjugated (system) and acrylates halides (possessing an electron withdrawing activating group) as the activated alkenyl halides, and alkenyl halides without these activating factors, for example alkyl substituted electron neutral alkenyl halides, as unactivated alkenyl halides. Indeed, they showed significant lower reactivity in C-H bond alkenylation, see: (a) Gottumukkala AL, Derridj F, Djebbar S, Doucet H. Tetrahedron Lett, 2008, 49: 2926–2930

    Article  CAS  Google Scholar 

  58. Schneider C, Masi D, Couve-Bonnaire S, Pannecoucke X, Hoarau C. Angew Chem Int Ed, 2013, 52: 3246–3249

    Article  CAS  Google Scholar 

  59. Zhang W, Tian Y, Zhao N, Wang Y, Li J, Wang Z. Tetrahedron, 2014, 70: 6120–6126

    Article  CAS  Google Scholar 

  60. Zhao Q, Tognetti V, Joubert L, Besset T, Pannecoucke X, Bouillon JP, Poisson T. Org Lett, 2017, 19: 2106–2109

    Article  CAS  PubMed  Google Scholar 

  61. Casotti G, Fusini G, Ferreri M, Pardini LF, Evangelisti C, Angelici G, Carpita A. Synthesis, 2020, 52: 1795–1803

    Article  CAS  Google Scholar 

  62. Feng G, Liu B. Acc Chem Res, 2018, 51: 1404–1414

    Article  CAS  PubMed  Google Scholar 

  63. Suleymanov AA, Doll M, Ruggi A, Scopelliti R, Fadaei-Tirani F, Severin K. Angew Chem Int Ed, 2020, 59: 9957–9961

    Article  CAS  Google Scholar 

  64. (a)_Azpíroz R, Di Giuseppe A, Passarelli V, Pérez-Torrente JJ, Oro LA, Castarlenas R. Organometallics, 2018, 37: 1695–1707

    Article  Google Scholar 

  65. Yan R, Wang ZX. Asian J Org Chem, 2018, 7: 240–247

    Article  CAS  Google Scholar 

  66. Pagire SK, Föll T, Reiser O. Acc Chem Res, 2020, 53: 782–791

    Article  CAS  PubMed  Google Scholar 

  67. Simmons EM, Hartwig JF. Angew Chem Int Ed, 2012, 51: 3066–3072

    Article  CAS  Google Scholar 

  68. According to Tolman’s calculation of electronic parameter, the nucleophility of our spirocyclic 6-membered ring’s NHC ligand is much higher than the commomly used 5-membered ring’s imidazole-type NHCs, ranking the second of two top NHCs species so far reported. See: Tolman CA. Chem Rev, 1977, 77: 313–348

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was suported by the National Natural Science Foundation of China (2187,1117, 91956203), the “111” Program of Minister of Education, Beijing National Laboratory for Molecular Sciences (BNLMS202109) and the Science and Technology Commission of Shanghai Municipality (19JC1430100). We also thank Prof. Lu Zhan (Zhejiang University) for his kind assistant HRMS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Qiang Tu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Tu, YQ., Lu, K. et al. Aromatic and olefinic C-H alkenylation by catalysis with spirocyclic NHC Ru(IV) pincer complex. Sci. China Chem. 66, 2791–2796 (2023). https://doi.org/10.1007/s11426-022-1541-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1541-5

Navigation