Skip to main content
Log in

Metal-organic frameworks as photocatalysts for aerobic oxidation reactions

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) are emerging as one of the most intriguing classes of heterogeneous photocatalysts owing to their abundant structures, tunable porosity, and versatile functions. The advantages of bottom-up design and reticular synthesis render MOF materials with desired photocatalytic properties for targeted reactions. In this review, we discussed the design and synthesis of MOF-based photocatalysts as well as strategies for enhancing photocatalytic performance. Recent progress on MOFs as platforms for photocatalytic aerobic oxidation reactions was summarized and categorized according to the types of bond formation. We hope this review will give an in-depth insight into MOF-based photocatalytic systems for not only aerobic oxidation reactions but also other organic transformations. A brief outlook on the challenges and opportunities of MOFs as heterogeneous photocatalysts is provided at the end of the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC. Nat Rev Chem, 2017, 1: 0052

    CAS  Google Scholar 

  2. Liu D, Wang X, Chen YP, Yuan S, Zhong C, Zhou HC. Sci China Chem, 2016, 59: 975–979

    CAS  Google Scholar 

  3. Han Z, Yan Z, Wang K, Kang X, Lv K, Zhang X, Zhou Z, Yang S, Shi W, Cheng P. Sci China Chem, 2022, 65: 1088–1093

    CAS  Google Scholar 

  4. Li R, Byun J, Huang W, Ayed C, Wang L, Zhang KAI. ACS Catal, 2018, 8: 4735–4750

    CAS  Google Scholar 

  5. Li C, Li J, Qin L, Yang P, Vlachos DG. ACS Catal, 2021, 11: 11336–11359

    CAS  Google Scholar 

  6. Beatty JW, Stephenson CRJ. Acc Chem Res, 2015, 48: 1474–1484

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liao Q, Xu W, Huang X, Ke C, Zhang Q, Xi K, Xie J. Sci China Chem, 2020, 63: 707–714

    CAS  Google Scholar 

  8. Wang Q, Nakabayashi M, Hisatomi T, Sun S, Akiyama S, Wang Z, Pan Z, Xiao X, Watanabe T, Yamada T, Shibata N, Takata T, Domen K. Nat Mater, 2019, 18: 827–832

    CAS  PubMed  Google Scholar 

  9. Wei PF, Qi MZ, Wang ZP, Ding SY, Yu W, Liu Q, Wang LK, Wang HZ, An WK, Wang W. J Am Chem Soc, 2018, 140: 4623–4631

    CAS  PubMed  Google Scholar 

  10. Chen YZ, Wang ZU, Wang H, Lu J, Yu SH, Jiang HL. J Am Chem Soc, 2017, 139: 2035–2044

    CAS  PubMed  Google Scholar 

  11. Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fujishima A, Honda K. Nature, 1972, 238: 37–38

    CAS  PubMed  Google Scholar 

  13. Lin H, Xu Y, Wang B, Li DS, Zhou T, Zhang J. Small Struct, 2022, 3: 2100176

    CAS  Google Scholar 

  14. Wu K, Jin JK, Liu XY, Huang YL, Cheng PW, Xie M, Zheng J, Lu W, Li D. J Mater Chem C, 2022, 10: 11967–11974

    CAS  Google Scholar 

  15. Jin JK, Wu K, Liu XY, Huang GQ, Huang YL, Luo D, Xie M, Zhao Y, Lu W, Zhou XP, He J, Li D. J Am Chem Soc, 2021, 143: 21340–21349

    CAS  PubMed  Google Scholar 

  16. Song C, Nie J, Ma C, Lu C, Wang F, Yang G. Appl Catal B-Environ, 2021, 287: 119984

    CAS  Google Scholar 

  17. Liu H, Xu C, Li D, Jiang HL. Angew Chem Int Ed, 2018, 57: 5379–5383

    CAS  Google Scholar 

  18. Xu C, Pan Y, Wan G, Liu H, Wang L, Zhou H, Yu SH, Jiang HL. J Am Chem Soc, 2019, 141: 19110–19117

    CAS  PubMed  Google Scholar 

  19. Yang X, Liang T, Sun J, Zaworotko MJ, Chen Y, Cheng P, Zhang Z. ACS Catal, 2019, 9: 7486–7493

    CAS  Google Scholar 

  20. Xiao JD, Jiang HL. Acc Chem Res, 2019, 52: 356–366

    CAS  PubMed  Google Scholar 

  21. Mo Q, Zhang L, Li S, Song H, Fan Y, Su CY. J Am Chem Soc, 2022, 144: 22747–22758

    CAS  PubMed  Google Scholar 

  22. Duan H, Zeng Y, Yao X, Xing P, Liu J, Zhao Y. Chem Mater, 2017, 29: 3671–3677

    CAS  Google Scholar 

  23. Chen F, Shen K, Chen L, Li Y. Sci China Chem, 2022, 65: 1411–1419

    CAS  Google Scholar 

  24. Feng R, Li ZY, Yao ZQ, Guo ZA, Zhang YN, Sun HX, Li W, Bu XH. Sci China Chem, 2021, 65: 128–134

    Google Scholar 

  25. Lei L, Chen F, Wu Y, Shen J, Wu XJ, Wu S, Yuan S. Sci China Chem, 2022, 65: 2205–2213

    CAS  Google Scholar 

  26. Brezová V, Gabčová S, Dvoranová D, Staško A. J Photochem Photobiol B-Biol, 2005, 79: 121–134

    Google Scholar 

  27. Rengifo-Herrera JA, Pierzchala K, Sienkiewicz A, Forró L, Kiwi J, Pulgarin C. Appl Catal B-Environ, 2009, 88: 398–406

    CAS  Google Scholar 

  28. Rengifo-Herrera JA, Pierzchala K, Sienkiewicz A, Forró L, Kiwi J, Moser JE, Pulgarin C. J Phys Chem C, 2010, 114: 2717–2723

    CAS  Google Scholar 

  29. Hawkins CL, Davies MJ. Biochim Biophys Acta (BBA) - Gen Subj, 2014, 1840: 708–721

    CAS  Google Scholar 

  30. Dvoranová D, Barbieriková Z, Brezová V. Molecules, 2014, 19: 17279–17304

    PubMed  PubMed Central  Google Scholar 

  31. Brezová V, Barbieriková Z, Zukalová M, Dvoranová D, Kavan L. Catal Today, 2014, 230: 112–118

    Google Scholar 

  32. Wang Z, Ma W, Chen C, Ji H, Zhao J. Chem Eng J, 2011, 170: 353–362

    CAS  Google Scholar 

  33. Nosaka Y, Nosaka AY. Chem Rev, 2017, 117: 11302–11336

    CAS  PubMed  Google Scholar 

  34. Tan T, Beydoun D, Amal R. J Photochem Photobiol A-Chem, 2003, 159: 273–280

    CAS  Google Scholar 

  35. Ma HY, Zhao L, Guo LH, Zhang H, Chen FJ, Yu WC. J Hazard Mater, 2019, 369: 719–726

    CAS  PubMed  Google Scholar 

  36. Schweitzer C, Schmidt R. Chem Rev, 2003, 103: 1685–1758

    CAS  PubMed  Google Scholar 

  37. Nosaka Y, Daimon T, Nosaka AY, Murakami Y. Phys Chem Chem Phys, 2004, 6: 2917–2918

    CAS  Google Scholar 

  38. Daimon T, Hirakawa T, Kitazawa M, Suetake J, Nosaka Y. Appl Catal A-Gen, 2008, 340: 169–175

    CAS  Google Scholar 

  39. Bielski BHJ, Cabelli DE, Arudi RL, Ross AB. J Phys Chem Ref Data, 1985, 14: 1041–1100

    CAS  Google Scholar 

  40. Gong Y, Zhou M, Andrews L. Chem Rev, 2009, 109: 6765–6808

    CAS  PubMed  Google Scholar 

  41. Shao M, Liu P, Adzic RR. J Am Chem Soc, 2006, 128: 7408–7409

    CAS  PubMed  Google Scholar 

  42. Ohno T, Masaki Y, Hirayama S, Matsumura M. J Catal, 2001, 204: 163–168

    CAS  Google Scholar 

  43. Goto H. J Catal, 2004, 225: 223–229

    CAS  Google Scholar 

  44. Kim C, Park H, Cha S, Yoon J. Chemosphere, 2013, 93: 2011–2015

    CAS  PubMed  Google Scholar 

  45. Huang H, Han X, Li X, Wang S, Chu PK, Zhang Y. ACS Appl Mater Interfaces, 2015, 7: 482–492

    CAS  PubMed  Google Scholar 

  46. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Nature, 1999, 402: 276–279

    CAS  Google Scholar 

  47. Bordiga S, Lamberti C, Ricchiardi G, Regli L, Bonino F, Damin A, Lillerud KP, Bjorgen M, Zecchina A. Chem Commun, 2004, 20: 2300–2301

    Google Scholar 

  48. Alvaro M, Carbonell E, Ferrer B, Llabrés i Xamena F, Garcia H. Chem Eur J, 2007, 13: 5106–5112

    CAS  PubMed  Google Scholar 

  49. Gascon J, Hernández-Alonso MD, Almeida AR, van Klink GP, Kapteijn F, Mul G. ChemSusChem, 2008, 1: 981–983

    CAS  PubMed  Google Scholar 

  50. Dan-Hardi M, Serre C, Frot T, Rozes L, Maurin G, Sanchez C, Férey G. J Am Chem Soc, 2009, 131: 10857–10859

    CAS  PubMed  Google Scholar 

  51. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP. J Am Chem Soc, 2008, 130: 13850–13851

    PubMed  Google Scholar 

  52. Wang D, Huang R, Liu W, Sun D, Li Z. ACS Catal, 2014, 4: 4254–4260

    CAS  Google Scholar 

  53. Wang D, Wang M, Li Z. ACS Catal, 2015, 5: 6852–6857

    CAS  Google Scholar 

  54. Potter ME, Ross CP, Gianolio D, Rios R, Raja R. Catal Sci Technol, 2020, 10: 7262–7269

    CAS  Google Scholar 

  55. Ghosh I, Ghosh T, Bardagi JI, König B. Science, 2014, 346: 725–728

    CAS  PubMed  Google Scholar 

  56. Zeng L, Liu T, He C, Shi D, Zhang F, Duan C. J Am Chem Soc, 2016, 138: 3958–3961

    CAS  PubMed  Google Scholar 

  57. Johnson JA, Luo J, Zhang X, Chen YS, Morton MD, Echeverria E, Torres FE, Zhang J. ACS Catal, 2015, 5: 5283–5291

    CAS  Google Scholar 

  58. Wang Y, Feng L, Pang J, Li J, Huang N, Day GS, Cheng L, Drake HF, Wang Y, Lollar C, Qin J, Gu Z, Lu T, Yuan S, Zhou HC. Adv Sci, 2019, 6: 1802059

    Google Scholar 

  59. Jiang ZW, Zou YC, Zhao TT, Zhen SJ, Li YF, Huang CZ. Angew Chem Int Ed, 2020, 59: 3300–3306

    CAS  Google Scholar 

  60. Long ZH, Luo D, Wu K, Chen ZY, Wu MM, Zhou XP, Li D. ACS Appl Mater Interfaces, 2021, 13: 37102–37110

    CAS  PubMed  Google Scholar 

  61. Feng D, Gu ZY, Li JR, Jiang HL, Wei Z, Zhou HC. Angew Chem Int Ed, 2012, 51: 10307–10310

    CAS  Google Scholar 

  62. Johnson JA, Zhang X, Reeson TC, Chen YS, Zhang J. J Am Chem Soc, 2014, 136: 15881–15884

    CAS  PubMed  Google Scholar 

  63. Liu Y, Howarth AJ, Hupp JT, Farha OK. Angew Chem Int Ed, 2015, 54: 9001–9005

    CAS  Google Scholar 

  64. Yuan S, Liu TF, Feng D, Tian J, Wang K, Qin J, Zhang Q, Chen YP, Bosch M, Zou L, Teat SJ, Dalgarno SJ, Zhou HC. Chem Sci, 2015, 6: 3926–3930

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Chem Soc Rev, 2021, 50: 3143–3177

    CAS  PubMed  Google Scholar 

  66. Maldonado RR, Zhang X, Hanna S, Gong X, Gianneschi NC, Hupp JT, Farha OK. Dalton Trans, 2020, 49: 6553–6556

    CAS  PubMed  Google Scholar 

  67. Zhang T, Wang P, Gao Z, An Y, He C, Duan C. RSC Adv, 2018, 8: 32610–32620

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu Y, Buru CT, Howarth AJ, Mahle JJ, Buchanan JH, DeCoste JB, Hupp JT, Farha OK. J Mater Chem A, 2016, 4: 13809–13813

    CAS  Google Scholar 

  69. Zhang Y, Pang J, Li J, Yang X, Feng M, Cai P, Zhou HC. Chem Sci, 2019, 10: 8455–8460

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen D, Xing H, Wang C, Su Z. J Mater Chem A, 2016, 4: 2657–2662

    CAS  Google Scholar 

  71. Xia Q, Yu X, Zhao H, Wang S, Wang H, Guo Z, Xing H. Cryst Growth Des, 2017, 17: 4189–4195

    CAS  Google Scholar 

  72. Wei H, Guo Z, Liang X, Chen P, Liu H, Xing H. ACS Appl Mater Interfaces, 2019, 11: 3016–3023

    CAS  PubMed  Google Scholar 

  73. Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075–10166

    CAS  PubMed  Google Scholar 

  74. Lee W, Jung S, Kim M, Hong S. J Am Chem Soc, 2021, 143: 3003–3012

    CAS  PubMed  Google Scholar 

  75. Li Y, Lei M, Gong L. Nat Catal, 2019, 2: 1016–1026

    CAS  Google Scholar 

  76. Zhao L, Cai W, Ji G, Wei J, Du Z, He C, Duan C. Inorg Chem, 2022, 61: 9493–9503

    CAS  PubMed  Google Scholar 

  77. Wang C, Xie Z, deKrafft KE, Lin W. J Am Chem Soc, 2011, 133: 13445–13454

    CAS  PubMed  Google Scholar 

  78. Liu Z, Li C, Chen J, Li X, Luo F, Cheng F, Liu JJ. Inorg Chem Front, 2022, 9: 111–118

    CAS  Google Scholar 

  79. Yu F, Wang Z, Zhang S, Ye H, Kong K, Gong X, Hua J, Tian H. Adv Funct Mater, 2018, 28: 1804512

    Google Scholar 

  80. Lin C, Liu X, Yu B, Han C, Gong L, Wang C, Gao Y, Bian Y, Jiang J. ACS Appl Mater Interfaces, 2021, 13: 27041–27048

    CAS  PubMed  Google Scholar 

  81. Chen J, Dong CL, Zhao D, Huang YC, Wang X, Samad L, Dang L, Shearer M, Shen S, Guo L. Adv Mater, 2017, 29: 1606198

    Google Scholar 

  82. Sun N, Wang C, Wang H, Yang L, Jin P, Zhang W, Jiang J. Angew Chem Int Ed, 2019, 58: 18011–18016

    CAS  Google Scholar 

  83. Zhang K, Kopetzki D, Seeberger PH, Antonietti M, Vilela F. Angew Chem Int Ed, 2013, 52: 1432–1436

    CAS  Google Scholar 

  84. Yu J, Sun X, Xu X, Zhang C, He X. Appl Catal B-Environ, 2019, 257: 117935

    CAS  Google Scholar 

  85. Teng L, Song G, Liu Y, Han X, Li Z, Wang Y, Huan S, Zhang XB, Tan W. J Am Chem Soc, 2019, 141: 13572–13581

    CAS  PubMed  Google Scholar 

  86. Li K, Zhang WD. Small, 2018, 14: 1703599

    Google Scholar 

  87. Zhang WQ, Li QY, Zhang Q, Lu Y, Lu H, Wang W, Zhao X, Wang XJ. Inorg Chem, 2016, 55: 1005–1007

    CAS  PubMed  Google Scholar 

  88. Goswami S, Miller CE, Logsdon JL, Buru CT, Wu YL, Bowman DN, Islamoglu T, Asiri AM, Cramer CJ, Wasielewski MR, Hupp JT, Farha OK. ACS Appl Mater Interfaces, 2017, 9: 19535–19540

    CAS  PubMed  Google Scholar 

  89. Zhang WQ, Cheng K, Zhang H, Li QY, Ma Z, Wang Z, Sheng J, Li Y, Zhao X, Wang XJ. Inorg Chem, 2018, 57: 4230–4233

    CAS  PubMed  Google Scholar 

  90. Hao Q, Li ZJ, Lu C, Sun B, Zhong YW, Wan LJ, Wang D. J Am Chem Soc, 2019, 141: 19831–19838

    CAS  PubMed  Google Scholar 

  91. Zou XN, Zhang D, Luan TX, Li Q, Li L, Li PZ, Zhao Y. ACS Appl Mater Interfaces, 2021, 13: 20137–20144

    CAS  PubMed  Google Scholar 

  92. Zhang D, Zou XN, Wang XG, Su J, Luan TX, Fan W, Li PZ, Zhao Y. ACS Appl Mater Interfaces, 2022, 14: 23518–23526

    CAS  Google Scholar 

  93. Jin Y, Ou L, Yang H, Fu H. J Am Chem Soc, 2017, 139: 14237–14243

    CAS  PubMed  Google Scholar 

  94. Majek M, Jacobi von Wangelin A. Acc Chem Res, 2016, 49: 2316–2327

    CAS  PubMed  Google Scholar 

  95. Hari DP, König B. Chem Commun, 2014, 50: 6688–6699

    CAS  Google Scholar 

  96. Fan XZ, Rong JW, Wu HL, Zhou Q, Deng HP, Tan JD, Xue CW, Wu LZ, Tao HR, Wu J. Angew Chem Int Ed, 2018, 57: 8514–8518

    CAS  Google Scholar 

  97. Zhao L, Du Z, Ji G, Wang Y, Cai W, He C, Duan C. Inorg Chem, 2022, 61: 7256–7265

    CAS  PubMed  Google Scholar 

  98. Feng X, Pi Y, Song Y, Xu Z, Li Z, Lin W. ACS Catal, 2021, 11: 1024–1032

    CAS  Google Scholar 

  99. Li Z, Xiao JD, Jiang HL. ACS Catal, 2016, 6: 5359–5365

    CAS  Google Scholar 

  100. Tan YX, Lin SX, Liu C, Huang Y, Zhou M, Kang Q, Yuan D, Hong M. Appl Catal B-Environ, 2018, 227: 425–432

    CAS  Google Scholar 

  101. Yang X, Huang T, Gao S, Cao R. J Catal, 2019, 378: 248–255

    CAS  Google Scholar 

  102. Ma P, Hu F, Wang J, Niu J. Coord Chem Rev, 2019, 378: 281–309

    CAS  Google Scholar 

  103. Paille G, Gomez-Mingot M, Roch-Marchal C, Lassalle-Kaiser B, Mialane P, Fontecave M, Mellot-Draznieks C, Dolbecq A. J Am Chem Soc, 2018, 140: 3613–3618

    CAS  PubMed  Google Scholar 

  104. Liu Y, Liu S, Liu S, Liang D, Li S, Tang Q, Wang X, Miao J, Shi Z, Zheng Z. ChemCatChem, 2013, 5: 3086–3091

    CAS  Google Scholar 

  105. Zhang ZM, Zhang T, Wang C, Lin Z, Long LS, Lin W. J Am Chem Soc, 2015, 137: 3197–3200

    CAS  PubMed  Google Scholar 

  106. Liu Y, Ji K, Wang J, Li H, Zhu X, Ma P, Niu J, Wang J. ACS Appl Mater Interfaces, 2022, 14: 27882–27890

    CAS  PubMed  Google Scholar 

  107. Zhang K, Xi Z, Wu Z, Lu G, Huang X. ACS Sustain Chem Eng, 2021, 9: 12623–12633

    CAS  Google Scholar 

  108. Wang T, Tao X, Xiao Y, Qiu G, Yang Y, Li B. Catal Sci Technol, 2020, 10: 138–146

    CAS  Google Scholar 

  109. Sun ZX, Sun K, Gao ML, Metin Ö, Jiang HL. Angew Chem Int Ed, 2022, 61: e202206108

    CAS  Google Scholar 

  110. Cotta MA. ACS Appl Nano Mater, 2020, 3: 4920–4924

    CAS  Google Scholar 

  111. Wu R, Wang S, Zhou Y, Long J, Dong F, Zhang W. ACS Appl Nano Mater, 2019, 2: 6818–6827

    CAS  Google Scholar 

  112. Gao K, Li H, Meng Q, Wu J, Hou H. ACS Appl Mater Interfaces, 2021, 13: 2779–2787

    CAS  PubMed  Google Scholar 

  113. Tashiro K, Aida T. Chem Soc Rev, 2007, 36: 189–197

    CAS  PubMed  Google Scholar 

  114. Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T. J Am Chem Soc, 2003, 125: 12803–12809

    CAS  PubMed  Google Scholar 

  115. Zheng DY, Chen EX, Ye CR, Huang XC. J Mater Chem A, 2019, 7: 22084–22091

    CAS  Google Scholar 

  116. Wei RJ, Zhou HG, Zhang ZY, Ning GH, Li D. CCS Chem, 2021, 3: 2045–2053

    CAS  Google Scholar 

  117. You P, Wei R, Ning G, Li D. Chem Res Chin Univ, 2021, 38: 415–420

    Google Scholar 

  118. Atilgan A, Islamoglu T, Howarth AJ, Hupp JT, Farha OK. ACS Appl Mater Interfaces, 2017, 9: 24555–24560

    CAS  PubMed  Google Scholar 

  119. Nguyen HL, Gándara F, Furukawa H, Doan TLH, Cordova KE, Yaghi OM. J Am Chem Soc, 2016, 138: 4330–4333

    CAS  PubMed  Google Scholar 

  120. Nguyen HL, Vu TT, Le D, Doan TLH, Nguyen VQ, Phan NTS. ACS Catal, 2016, 7: 338–342

    Google Scholar 

  121. Wang X, Ma K, Goh T, Mian MR, Xie H, Mao H, Duan J, Kirli-kovali KO, Stone AEBS, Ray D, Wasielewski MR, Gagliardi L, Farha OK. J Am Chem Soc, 2022, 144: 12192–12201

    CAS  PubMed  Google Scholar 

  122. Yuan S, Chen YP, Qin J, Lu W, Wang X, Zhang Q, Bosch M, Liu TF, Lian X, Zhou HC. Angew Chem Int Ed, 2015, 54: 14696–14700

    CAS  Google Scholar 

  123. Lin CK, Zhao D, Gao WY, Yang Z, Ye J, Xu T, Ge Q, Ma S, Liu DJ. Inorg Chem, 2012, 51: 9039–9044

    CAS  PubMed  Google Scholar 

  124. Ke F, Wang L, Zhu J. Nano Res, 2015, 8: 1834–1846

    CAS  Google Scholar 

  125. Quan Y, Shi W, Song Y, Jiang X, Wang C, Lin W. JAm Chem Soc, 2021, 143: 3075–3080

    CAS  Google Scholar 

  126. Wang X, Chen L, Chong SY, Little MA, Wu Y, Zhu WH, Clowes R, Yan Y, Zwijnenburg MA, Sprick RS, Cooper AI. Nat Chem, 2018, 10: 1180–1189

    CAS  PubMed  Google Scholar 

  127. Duan H, Li K, Xie M, Chen JM, Zhou HG, Wu X, Ning GH, Cooper AI, Li D. J Am Chem Soc, 2021, 143: 19446–19453

    CAS  PubMed  Google Scholar 

  128. Bartling H, Eisenhofer A, König B, Gschwind RM. J Am Chem Soc, 2016, 138: 11860–11871

    CAS  PubMed  Google Scholar 

  129. Baslé O, Li CJ. Green Chem, 2007, 9: 1047–1050

    Google Scholar 

  130. Li H, Yang Y, He C, Zeng L, Duan C. ACS Catal, 2018, 9: 422–430

    Google Scholar 

  131. Kumar G, Solanki P, Nazish M, Neogi S, Kureshy RI, Khan NH. J Catal, 2019, 371: 298–304

    CAS  Google Scholar 

  132. Yu X, Cohen SM. Chem Commun, 2015, 51: 9880–9883

    CAS  Google Scholar 

  133. Toyao T, Ueno N, Miyahara K, Matsui Y, Kim TH, Horiuchi Y, Ikeda H, Matsuoka M. Chem Commun, 2015, 51: 16103–16106

    CAS  Google Scholar 

  134. Zhang WQ, Li QY, Yang X, Ma Z, Wang H, Wang XJ. Acta Chim Sin, 2017, 75: 80–85

    CAS  Google Scholar 

  135. Sun D, Ye L, Li Z. Appl Catal B-Environ, 2015, 164: 428–432

    CAS  Google Scholar 

  136. Xu C, Liu H, Li D, Su JH, Jiang HL. Chem Sci, 2018, 9: 3152–3158

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Che G, Yang W, Wang C, Li M, Li X, Pan Q. Inorg Chem, 2022, 61: 12301–12307

    CAS  PubMed  Google Scholar 

  138. Cao M, Pang R, Wang QY, Han Z, Wang ZY, Dong XY, Li SF, Zang SQ, Mak TCW. J Am Chem Soc, 2019, 141: 14505–14509

    CAS  PubMed  Google Scholar 

  139. Sheng W, Wang X, Wang Y, Chen S, Lang X. ACS Catal, 2022, 12: 11078–11088

    CAS  Google Scholar 

  140. Li C, Zhang H, Wang X, Li QY, Zhao X, Wang XJ. RSC Adv, 2022, 12: 1638–1644

    PubMed  PubMed Central  Google Scholar 

  141. Yalavarthi NR, Gundoju N, Bokam R, Ponnapalli MG. J Chem Sci, 2019, 131: 8

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21731002, 21975104, 22101099, 22150004, 22271120), Guangdong Major Project of Basic and Applied Research (2019B030302009), and the Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of Jinan University (2022CXB007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mo Xie, Weigang Lu or Dan Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Liu, XY., Cheng, PW. et al. Metal-organic frameworks as photocatalysts for aerobic oxidation reactions. Sci. China Chem. 66, 1634–1653 (2023). https://doi.org/10.1007/s11426-022-1519-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1519-x

Keywords

Navigation