Skip to main content
Log in

Practical N-alkylation via homogeneous iridium-catalyzed direct reductive amination

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Direct reductive amination (DRA) is one of the most efficient methods for amine synthesis. Herein we report a practical homogeneous DRA procedure utilizing iridium catalysis. Applying simple, readily available and inexpensive PPh3 and alike ligands along with iridium at a low loading, aldehydes and ketones reductively coupled with primary and secondary amines to efficiently form structurally and functionally diverse amine products, including a set of drugs and compounds from late-stage manipulation. The reaction conditions were exceptionally mild and additive-free, in which oxygen, moisture, polar protic groups and multiple other functional groups were tolerated. For targeted products, this methodology is especially versatile for offering multiple possible synthetic options. The 10 gram-scale synthesis further demonstrated the potential and promise of this procedure in practical amine synthesis. DFT studies reveal an “outer-sphere” H-addition pathway, in which π−π interactions and H-bonding play important roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ricci A. Modern Amination Methods. Weinheim: Wiley-VCH, 2000

    Book  Google Scholar 

  2. Lawrence SA. Amines: Synthesis, Properties and Applications. Cambridge: Cambridge University Press, 2004

    Google Scholar 

  3. Ricci A. Amino Group Chemistry: From Synthesis to the Life Sciences. Weinheim: Wiley-VCH, 2008

    Google Scholar 

  4. Froidevaux V, Negrell C, Caillol S, Pascault JP, Boutevin B. Chem Rev, 2016, 116: 14181–14224

    Article  CAS  Google Scholar 

  5. Vitaku E, Smith DT, Njardarson JT. J Med Chem, 2014, 57: 10257–10274

    Article  CAS  Google Scholar 

  6. Roughley SD, Jordan AM. J Med Chem, 2011, 54: 3451–3479

    Article  CAS  Google Scholar 

  7. Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat Chem, 2018, 10: 383–394

    Article  CAS  Google Scholar 

  8. Brown DG, Boström J. J Med Chem, 2016, 59: 4443–4458

    Article  CAS  Google Scholar 

  9. Trowbridge A, Walton SM, Gaunt MJ. Chem Rev, 2020, 120: 2613–2692

    Article  CAS  Google Scholar 

  10. Leuckart R. Ber Dtsch Chem Ges, 1885, 18: 2341–2344

    Article  Google Scholar 

  11. Podyacheva E, Afanasyev OI, Tsygankov AA, Makarova M, Chusov D. Synthesis, 2019, 51: 2667–2677

    Article  CAS  Google Scholar 

  12. Afanasyev OI, Kuchuk E, Usanov DL, Chusov D. Chem Rev, 2019, 119: 11857–11911

    Article  CAS  Google Scholar 

  13. Irrgang T, Kempe R. Chem Rev, 2020, 120: 9583–9674

    Article  CAS  Google Scholar 

  14. Murugesan K, Senthamarai T, Chandrashekhar VG, Natte K, Kamer PCJ, Beller M, Jagadeesh RV. Chem Soc Rev, 2020, 49: 6273–6328

    Article  CAS  Google Scholar 

  15. Tian Y, Hu L, Wang YZ, Zhang X, Yin Q. Org Chem Front, 2021, 8: 2328–2342

    Article  CAS  Google Scholar 

  16. Reshi NUD, Saptal VB, Beller M, Bera JK. ACS Catal, 2021, 11: 13809–13837

    Article  CAS  Google Scholar 

  17. Jagadeesh RV, Murugesan K, Alshammari AS, Neumann H, Pohl MM, Radnik J, Beller M. Science, 2017, 358: 326–332

    Article  CAS  Google Scholar 

  18. Murugesan K, Beller M, Jagadeesh RV. Angew Chem Int Ed, 2019, 58: 5064–5068

    Article  CAS  Google Scholar 

  19. Li C, Villa-Marcos B, Xiao J. J Am Chem Soc, 2009, 131: 6967–6969

    Article  CAS  Google Scholar 

  20. Steinhuebel D, Sun Y, Matsumura K, Sayo N, Saito T. J Am Chem Soc, 2009, 131: 11316–11317

    Article  CAS  Google Scholar 

  21. Chen ZP, Hu SB, Zhou J, Zhou YG. ACS Catal, 2015, 5: 6086–6089

    Article  CAS  Google Scholar 

  22. Huang H, Liu X, Zhou L, Chang M, Zhang X. Angew Chem Int Ed, 2016, 55: 5309–5312

    Article  CAS  Google Scholar 

  23. Yang P, Lim LH, Chuanprasit P, Hirao H, Zhou JS. Angew Chem Int Ed, 2016, 55: 12083–12087

    Article  CAS  Google Scholar 

  24. Lou Y, Hu Y, Lu J, Guan F, Gong G, Yin Q, Zhang X. Angew Chem Int Ed, 2018, 57: 14193–14197

    Article  CAS  Google Scholar 

  25. Tan X, Gao S, Zeng W, Xin S, Yin Q, Zhang X. J Am Chem Soc, 2018, 140: 2024–2027

    Article  CAS  Google Scholar 

  26. Gallardo-Donaire J, Hermsen M, Wysocki J, Ernst M, Rominger F, Trapp O, Hashmi ASK, Schäfer A, Comba P, Schaub T. J Am Chem Soc, 2018, 140: 355–361

    Article  CAS  Google Scholar 

  27. Wu Z, Du S, Gao G, Yang W, Yang X, Huang H, Chang M. Chem Sci, 2019, 10: 4509–4514

    Article  CAS  Google Scholar 

  28. Hu L, Zhang Y, Zhang Q, Yin Q, Zhang X. Angew Chem Int Ed, 2020, 59: 5321–5325

    Article  CAS  Google Scholar 

  29. Yuan S, Gao G, Wang L, Liu C, Wan L, Huang H, Geng H, Chang M. Nat Commun, 2020, 11: 621

    Article  CAS  Google Scholar 

  30. Gao Z, Liu J, Huang H, Geng H, Chang M. Angew Chem Int Ed, 2021, 60: 27307–27311

    Article  CAS  Google Scholar 

  31. Wu Z, Wang W, Guo H, Gao G, Huang H, Chang M. Nat Commun, 2022, 13: 3344

    Article  CAS  Google Scholar 

  32. Dorkó É, Szabó M, Kótai B, Pápai I, Domján A, Soós T. Angew Chem Int Ed, 2017, 56: 9512–9516

    Article  Google Scholar 

  33. Senthamarai T, Murugesan K, Schneidewind J, Kalevaru NV, Baumann W, Neumann H, Kamer PCJ, Beller M, Jagadeesh RV. Nat Commun, 2018, 9: 4123–4134

    Article  Google Scholar 

  34. Murugesan K, Wei Z, Chandrashekhar VG, Neumann H, Spannenberg A, Jiao H, Beller M, Jagadeesh RV. Nat Commun, 2019, 10: 5443

    Article  Google Scholar 

  35. Wang C, Pettman A, Basca J, Xiao J. Angew Chem Int Ed, 2010, 49: 7548–7552

    Article  CAS  Google Scholar 

  36. Tanaka K, Miki T, Murata K, Yamaguchi A, Kayaki Y, Kuwata S, Ikariya T, Watanabe M. J Org Chem, 2019, 84: 10962–10977

    Article  CAS  Google Scholar 

  37. Polishchuk I, Sklyaruk J, Lebedev Y, Rueping M. Chem Eur J, 2021, 27: 5919–5922

    Article  CAS  Google Scholar 

  38. Sagan S, Karoyan P, Lequin O, Chassaing G, Lavielle S. Curr Med Chem, 2004, 11: 2799–2822

    Article  CAS  Google Scholar 

  39. Subtelny AO, Hartman MCT, Szostak JW. J Am Chem Soc, 2008, 130: 6131–6136

    Article  CAS  Google Scholar 

  40. Lee OY, Law KL, Ho CY, Yang D. J Org Chem, 2008, 73: 8829–8837

    Article  CAS  Google Scholar 

  41. Nayal OS, Bhatt V, Sharma S, Kumar N. J Org Chem, 2015, 80: 5912–5918

    Article  CAS  Google Scholar 

  42. Varjosaari SE, Skrypai V, Suating P, Hurley JJM, Lio AMD, Gilbert TM, Adler MJ. Adv Synth Catal, 2017, 359: 1872–1878

    Article  CAS  Google Scholar 

  43. Isidro-Llobet A, Álvarez M, Albericio F. Chem Rev, 2009, 109: 2455–2504

    Article  CAS  Google Scholar 

  44. Aurelio L, Brownlee RTC, Hughes AB. Chem Rev, 2004, 104: 5823–5846

    Article  CAS  Google Scholar 

  45. Dobereiner GE, Nova A, Schley ND, Hazari N, Miller SJ, Eisenstein O, Crabtree RH. J Am Chem Soc, 2011, 133: 7547–7562

    Article  CAS  Google Scholar 

  46. Li ML, Yang S, Su XC, Wu HL, Yang LL, Zhu SF, Zhou QL. J Am Chem Soc, 2017, 139: 541–547

    Article  CAS  Google Scholar 

  47. Cui CX, Chen H, Li SJ, Zhang T, Qu LB, Lan Y. Coord Chem Rev, 2020, 412: 213251

    Article  CAS  Google Scholar 

  48. Grimme S. Angew Chem Int Ed, 2008, 47: 3430–3434

    Article  CAS  Google Scholar 

  49. Martinez CR, Iverson BL. Chem Sci, 2012, 3: 2191–2201

    Article  CAS  Google Scholar 

  50. Carter-Fenk K, Herbert JM. Phys Chem Chem Phys, 2020, 22: 24870–24886

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21772155), the National Key R&D Program of China (2020YFA0907901), the Scientific Fund of Northwest A&F University and Postdoctoral Science Foundation of China (2019M663827). We thank HPC of Northwest A&F University for the DFT calculations carried out in this work. We also give special thanks to Dr. Xiuhuan Li of State Key Laboratory of Crop Stress Biology for Arid Areas at Northwest A&F University for her kind help on the NMR spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxin Chang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, W., Yang, X. et al. Practical N-alkylation via homogeneous iridium-catalyzed direct reductive amination. Sci. China Chem. 66, 518–525 (2023). https://doi.org/10.1007/s11426-022-1494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1494-7

Keywords

Navigation