Skip to main content
Log in

Lanthanide-oxo clusters for efficient catalytic reduction of carboxamides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The reduction of carboxamides into high value-added amines is a very interesting but great challenging topic. Herein we demonstrate that polynuclear lanthanide-oxo clusters Ln16 (Ln = Eu and Gd) can be used as efficient catalyst to reduce primary and secondary carboxamides to amines with excellent yield of 71%–98% and broad substrates scope. The methodology can extend to the gram-scale synthesis of phenethylamine drug with 93% yield. Based on the isolation and characterization of catalytic intermediates, a catalytic mechanism involving multipath reaction is proposed. This work provides efficient lanthanide cluster catalysts for the reduction of carboxamides to amines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuwano R, Takahashi M, Ito Y. Tetrahedron Lett, 1998, 39: 1017–1020

    Article  CAS  Google Scholar 

  2. Tamang SR, Singh A, Bedi D, Bazkiaei AR, Warner AA, Glogau K, McDonald C, Unruh DK, Findlater M. Nat Catal, 2020, 3: 154–162

    Article  CAS  Google Scholar 

  3. Bhunia M, Sahoo SR, Das A, Ahmed J, P. S, Mandal SK. Chem Sci, 2020, 11: 1848–1854

    Article  CAS  Google Scholar 

  4. Balaraman E, Gnanaprakasam B, Shimon LJW, Milstein D. J Am Chem Soc, 2010, 132: 16756–16758

    Article  CAS  Google Scholar 

  5. Chardon A, Morisset E, Rouden J, Blanchet J. Synthesis, 2018, 50: 984–997

    Article  CAS  Google Scholar 

  6. Volkov A, Tinnis F, Slagbrand T, Trillo P, Adolfsson H. Chem Soc Rev, 2016, 45: 6685–6697

    Article  CAS  Google Scholar 

  7. Saha S, Eisen MS. Dalton Trans, 2020, 49: 12835–12841

    Article  CAS  Google Scholar 

  8. Liu RY, Bae M, Buchwald SL. J Am Chem Soc, 2018, 140: 1627–1631

    Article  CAS  Google Scholar 

  9. Kuciński K, Hreczycho G. Green Chem, 2020, 22: 5210–5224

    Article  Google Scholar 

  10. Huang PQ, Lang QW, Wang YR. J Org Chem, 2016, 81: 4235–4243

    Article  CAS  Google Scholar 

  11. Huang PQ, Geng H. Org Chem Front, 2015, 2: 150–158

    Article  CAS  Google Scholar 

  12. Papa V, Cabrero-Antonino JR, Alberico E, Spanneberg A, Junge K, Junge H, Beller M. Chem Sci, 2017, 8: 3576–3585

    Article  CAS  Google Scholar 

  13. Sitte NA, Bursch M, Grimme S, Paradies J. J Am Chem Soc, 2019, 141: 159–162

    Article  CAS  Google Scholar 

  14. Chaudhari MB, Gnanaprakasam B. Chem Asian J, 2019, 14: 76–93

    Article  CAS  Google Scholar 

  15. Yao W, Wang J, Zhong A, Wang S, Shao Y. Org Chem Front, 2020, 7: 3515–3520

    Article  CAS  Google Scholar 

  16. Das HS, Das S, Dey K, Singh B, K. Haridasan R, Das A, Ahmed J, Mandal SK. Chem Commun, 2019, 55: 11868–11871

    Article  CAS  Google Scholar 

  17. Yu C, Guo C, Jiang L, Gong M, Luo Y. Organometallics, 2021, 40: 1201–1206

    Article  CAS  Google Scholar 

  18. Sunada Y, Kawakami H, Imaoka T, Motoyama Y, Nagashima H. Angew Chem Int Ed, 2009, 48: 9511–9514

    Article  CAS  Google Scholar 

  19. Das S, Addis D, Zhou S, Junge K, Beller M. J Am Chem Soc, 2010, 132: 1770–1771

    Article  CAS  Google Scholar 

  20. Cheng C, Brookhart M. J Am Chem Soc, 2012, 134: 11304–11307

    Article  CAS  Google Scholar 

  21. Das S, Wendt B, Möller K, Junge K, Beller M. Angew Chem Int Ed, 2012, 51: 1662–1666

    Article  CAS  Google Scholar 

  22. Li B, Sortais JB, Darcel C. Chem Commun, 2013, 49: 3691–3693

    Article  CAS  Google Scholar 

  23. Reeves JT, Tan Z, Marsini MA, Han ZS, Xu Y, Reeves DC, Lee H, Lu BZ, Senanayake CH. Adv Synth Catal, 2013, 355: 47–52

    Article  CAS  Google Scholar 

  24. Blondiaux E, Cantat T. Chem Commun, 2014, 50: 9349–9352

    Article  CAS  Google Scholar 

  25. Simmons BJ, Hoffmann M, Hwang J, Jackl MK, Garg NK. Org Lett, 2017, 19: 1910–1913

    Article  CAS  Google Scholar 

  26. Igarashi M, Fuchikami T. Tetrahedron Lett, 2001, 42: 1945–1947

    Article  CAS  Google Scholar 

  27. Tinnis F, Volkov A, Slagbrand T, Adolfsson H. Angew Chem Int Ed, 2016, 55: 4562–4566

    Article  CAS  Google Scholar 

  28. Das S, Karmakar H, Bhattacharjee J, Panda TK. Dalton Trans, 2019, 48: 11978–11984

    Article  CAS  Google Scholar 

  29. Leischner T, Artús Suarez L, Spannenberg A, Junge K, Nova A, Beller M. Chem Sci, 2019, 10: 10566–10576

    Article  CAS  Google Scholar 

  30. Ong DY, Yen Z, Yoshii A, Revillo Imbernon J, Takita R, Chiba S. Angew Chem Int Ed, 2019, 58: 4992–4997

    Article  CAS  Google Scholar 

  31. Sorribes I, Lemos SCS, Martín S, Mayoral A, Lima RC, Andrés J. Catal Sci Technol, 2019, 9: 6965–6976

    Article  CAS  Google Scholar 

  32. Bisai MK, Gour K, Das T, Vanka K, Sen SS. Dalton Trans, 2021, 50: 2354–2358

    Article  CAS  Google Scholar 

  33. Szostak M, Spain M, Eberhart AJ, Procter DJ. J Am Chem Soc, 2014, 136: 2268–2271

    Article  CAS  Google Scholar 

  34. Lampland NL, Hovey M, Mukherjee D, Sadow AD. ACS Catal, 2015, 5: 4219–4226

    Article  CAS  Google Scholar 

  35. Barger CJ, Dicken RD, Weidner VL, Motta A, Lohr TL, Marks TJ. J Am Chem Soc, 2020, 142: 8019–8028

    Article  CAS  Google Scholar 

  36. Ye P, Shao Y, Ye X, Zhang F, Li R, Sun J, Xu B, Chen J. Org Lett, 2020, 22: 1306–1310

    Article  CAS  Google Scholar 

  37. Tsutsumi H, Sunada Y, Nagashima H. Chem Commun, 2011, 47: 6581–6583

    Article  CAS  Google Scholar 

  38. Du MH, Chen LQ, Jiang LP, Liu WD, Long LS, Zheng L, Kong XJ. J Am Chem Soc, 2022, 144: 5653–5660

    Article  CAS  Google Scholar 

  39. Maity A, Teets TS. Chem Rev, 2016, 116: 8873–8911

    Article  CAS  Google Scholar 

  40. Hadebe SW, Robinson RS. Eur J Org Chem, 2006, 2006(21): 4898–4904

    Article  Google Scholar 

  41. Brown HC, Heim P. J Am Chem Soc, 1964, 86: 3566–3567

    Article  CAS  Google Scholar 

  42. Kornet MJ, Thio PA, Tan SI. J Org Chem, 1968, 33: 3637–3639

    Article  CAS  Google Scholar 

  43. Harder S, Spielmann J. J Organomet Chem, 2012, 698: 7–14

    Article  CAS  Google Scholar 

  44. Müller F, Trincado M, Pribanic B, Vogt M, Grützmacher H. J Organomet Chem, 2016, 821: 154–162

    Article  Google Scholar 

  45. Bage AD, Hunt TA, Thomas SP. Org Lett, 2020, 22: 4107–4112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92161104, 21871224, 92161203, 21721001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Jian Kong.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, ZZ., Chen, CL., Ye, LW. et al. Lanthanide-oxo clusters for efficient catalytic reduction of carboxamides. Sci. China Chem. 66, 443–448 (2023). https://doi.org/10.1007/s11426-022-1493-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1493-y

Keywords

Navigation