Skip to main content
Log in

Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammer SK, Avalos JL. Nat Chem Biol, 2017, 13: 823–832

    Article  CAS  PubMed  Google Scholar 

  2. Lee KY, Park SJ, Lee KA, Kim SH, Kim H, Meroz Y, Mahadevan L, Jung KH, Ahn TK, Parker KK, Shin K. Nat Biotechnol, 2018, 36: 530–535

    Article  CAS  PubMed  Google Scholar 

  3. Oerlemans RAJF, Timmermans SBPE, Hest JCM. ChemBioChem, 2021, 22: 2051–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen Y, Tan J, Zhang Q, Xin T, Yu Y, Nie Y, Zhang S. Nano Lett, 2020, 20: 6548–6555

    Article  CAS  PubMed  Google Scholar 

  5. Godoy-Gallardo M, York-Duran MJ, Hosta-Rigau L. Adv Healthcare Mater, 2018, 7: 1700917

    Article  Google Scholar 

  6. Guo X, Li F, Liu C, Zhu Y, Xiao N, Gu Z, Luo D, Jiang J, Yang D. Angew Chem Int Ed, 2020, 59: 20651–20658

    Article  CAS  Google Scholar 

  7. Staufer O, Schröter M, Platzman I, Spatz JP. Small, 2020, 16: 1906424

    Article  CAS  Google Scholar 

  8. Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Chem Soc Rev, 2018, 47: 8572–8610

    Article  CAS  PubMed  Google Scholar 

  9. Balasubramanian V, Correia A, Zhang H, Fontana F, Mäkilä E, Salonen J, Hirvonen J, Santos HA. Adv Mater, 2017, 29: 1605375

    Article  Google Scholar 

  10. Reifenrath M, Oreb M, Boles E, Tripp J. ACS Synth Biol, 2020, 9: 2909–2916

    Article  CAS  PubMed  Google Scholar 

  11. Schoonen L, van Hest JCM. Adv Mater, 2016, 28: 1109–1128

    Article  CAS  PubMed  Google Scholar 

  12. Tanner P, Balasubramanian V, Palivan CG. Nano Lett, 2013, 13: 2875–2883

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Hu J, Liu G, Tian J, Wang H, Gong M, Liu S. J Am Chem Soc, 2015, 137: 15262–15275

    Article  CAS  PubMed  Google Scholar 

  14. Marguet M, Bonduelle C, Lecommandoux S. Chem Soc Rev, 2013, 42: 512–529

    Article  CAS  PubMed  Google Scholar 

  15. Huber MC, Schreiber A, von Olshausen P, Varga BR, Kretz O, Joch B, Barnert S, Schubert R, Eimer S, Kele P, Schiller SM. Nat Mater, 2015, 14: 125–132

    Article  CAS  PubMed  Google Scholar 

  16. Reinkemeier CD, Girona GE, Lemke EA. Science, 2019, 363: 1415

    Article  Google Scholar 

  17. Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP. Cell, 2016, 165: 1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Liu M, Wei Q, Wu W, He Y, Gao J, Zhou R, Jiang L, Qu J, Xia J. Angew Chem Int Ed, 2022, 61: e202203909

    CAS  Google Scholar 

  19. Wei SP, Qian ZG, Hu CF, Pan F, Chen MT, Lee SY, Xia XX. Nat Chem Biol, 2020, 16: 1143–1148

    Article  CAS  PubMed  Google Scholar 

  20. Iwata T, Hirose H, Sakamoto K, Hirai Y, Arafiles JVV, Akishiba M, Imanishi M, Futaki S. Angew Chem Int Ed, 2021, 60: 19804–19812

    Article  CAS  Google Scholar 

  21. Shin Y, Brangwynne CP. Science, 2017, 357: 6357

    Article  Google Scholar 

  22. Alberti S, Gladfelter A, Mittag T. Cell, 2019, 176: 419–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei MT, Elbaum-Garfinkle S, Holehouse AS, Chen CCH, Feric M, Arnold CB, Priestley RD, Pappu RV, Brangwynne CP. Nat Chem, 2017, 9: 1118–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Uversky VN. Curr Opin Struct Biol, 2017, 44: 18–30

    Article  CAS  PubMed  Google Scholar 

  25. Deng N, Huck WTS. Angew Chem Int Ed, 2017, 56: 9736–9740

    Article  CAS  Google Scholar 

  26. Aumiller Jr. WM, Keating CD. Nat Chem, 2016, 8: 129–137

    Article  CAS  PubMed  Google Scholar 

  27. Martin N, Tian L, Spencer D, Coutable-Pennarun A, Anderson JLR, Mann S. Angew Chem Int Ed, 2019, 58: 14594–14598

    Article  CAS  Google Scholar 

  28. Donau C, Späth F, Sosson M, Kriebisch BAK, Schnitter F, Tena-Solsona M, Kang HS, Salibi E, Sattler M, Mutschler H, Boekhoven J. Nat Commun, 2020, 11: 5167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Banani SF, Lee HO, Hyman AA, Rosen MK. Nat Rev Mol Cell Biol, 2017, 18: 285–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao EM, Suek N, Wilson MZ, Dine E, Pannucci NL, Gitai Z, Avalos JL, Toettcher JE. Nat Chem Biol, 2019, 15: 589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Einfalt T, Witzigmann D, Edlinger C, Sieber S, Goers R, Najer A, Spulber M, Onaca-Fischer O, Huwyler J, Palivan CG. Nat Commun, 2018, 9: 1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naseem K. Mol Aspects Med, 2005, 26: 33–65

    Article  CAS  PubMed  Google Scholar 

  33. Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Crit Care Clin, 2020, 36: 307–321

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu S, Zhang Y, Li M, Xiong L, Zhang Z, Yang X, He X, Wang K, Liu J, Mann S. Nat Chem, 2020, 12: 1165–1173

    Article  CAS  PubMed  Google Scholar 

  35. Zhang X, Li C, Liu F, Mu W, Ren Y, Yang B, Han X. Nat Commun, 2022, 13: 2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Joshi S, Young WL, Duong DH, Ostapkovich ND, Aagaard BD, Hashimoto T, Pile-Spellman J. Anesthesiology, 2000, 93: 699–707

    Article  CAS  PubMed  Google Scholar 

  37. Wang S, Jin S, Li G, Sun R, Shu Q, Wu S. ACS Omega, 2020, 5: 33133–33139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang YW, Liu SY, Yao Y, Chen YF, Zhou SH, Yang XH, Wang KM, Liu JB. Small, 2020, 16: 20020733

    Google Scholar 

  39. Armstrong JPK, Olof SN, Jakimowicz MD, Hollander AP, Mann S, Davis SA, Miles MJ, Patil AJ, Perriman AW. Chem Sci, 2015, 6: 6106–6111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baydoun AR, Emery PW, Pearson JD, Mann GE. Biochem Biophys Res Commun, 1990, 173: 940–948

    Article  CAS  PubMed  Google Scholar 

  41. Mónica FZ, Bian K, Murad F. Adv Pharmacol, 2016, 77: 1–27

    Article  PubMed  Google Scholar 

  42. Friebe A, Koesling D. Circ Res, 2003, 93: 96–105

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Annich GM, Miskulin J, Stankiewicz K, Osterholzer K, Merz SI, Bartlett RH, Meyerhoff ME. J Am Chem Soc, 2003, 125: 5015–5024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21735002, 22177032, 32101082), the Science Fund for Distinguished Young Scholars of Hunan Province (2021JJ10013), the Hunan Province Innovative Talent Funding for Postdoctoral Fellows (2021RC2059) and the Postdoctoral Science Foundation of China (2021TQ0103, 2021M690957).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Liu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, S., Yan, Y. et al. Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair. Sci. China Chem. 66, 845–852 (2023). https://doi.org/10.1007/s11426-022-1491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1491-0

Keywords

Navigation