Skip to main content
Log in

Correlate phonon modes with ion transport via isotope substitution

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Understanding the correlations between lattice dynamics (phonons) and ion transport is important for improving the ionic conductivity of solid-state electrolytes. This understanding largely hinges on selective tuning or excitation of specific phonon modes without changing the chemical environments of atoms, which is, however, challenging to be achieved. In this work, we used 6Li isotope substitution to selectively change the phonon properties associated with lithium, without introducing additional defects or disorders which would affect the ion transport properties. The changes in the phonon modes were then related to ion transport properties through impedance measurements and deep potential molecular dynamics simulations. Our results demonstrated that lower lithium vibration frequency leads to higher ionic conductivity and lower activation energy in the garnet solid-state electrolyte of Li6.4La3Zr1.4Ta0.6O12. We furthermore quantified the effect of lithium-related phonons on the migration entropy and attempt frequency, which would be difficult to be achieved otherwise. Our work suggests an effective isotope substitution method to decouple the effect of phonon modes to ion transport from that of other complex structural factors. The obtained insights can contribute to innovative understanding of ion transport in solids and strategies to optimize the ionic conductivity of solid-state electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Nat Mater, 2019, 18: 1278–1291

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Z, Shao Y, Lotsch B, Hu YS, Li H, Janek J, Nazar LF, Nan CW, Maier J, Armand M, Chen L. Energy Environ Sci, 2018, 11: 1945–1976

    Article  CAS  Google Scholar 

  3. Gao Y, Mishra TP, Bo SH, Sai Gautam G, Canepa P. Annu Rev Mater Res, 2022, 52: 129–158

    Article  Google Scholar 

  4. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. Nat Mater, 2011, 10: 682–686

    Article  CAS  PubMed  Google Scholar 

  5. Rayavarapu PR, Sharma N, Peterson VK, Adams S. J Solid State Electrochem, 2011, 16: 1807–1813

    Article  Google Scholar 

  6. Li X, Liang J, Luo J, Norouzi Banis M, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, Sham TK, Zhang L, Zhao S, Lu S, Huang H, Li R, Adair KR, Sun X. Energy Environ Sci, 2019, 12: 2665–2671

    Article  CAS  Google Scholar 

  7. Thangadurai V, Kaack H, Weppner WJF. J Am Ceramic Soc, 2003, 86: 437–440

    Article  CAS  Google Scholar 

  8. Bruce PG, West AR. J Solid State Chem, 1982, 44: 354–365

    Article  CAS  Google Scholar 

  9. Deng Y, Eames C, Fleutot B, David R, Chotard JN, Suard E, Masquelier C, Islam MS. ACS Appl Mater Interfaces, 2017, 9: 7050–7058

    Article  CAS  PubMed  Google Scholar 

  10. Harada Y. Solid State Ion, 1998, 108: 407–413

    Article  CAS  Google Scholar 

  11. Itoh M, Inaguma Y, Jung W, Chen L, Nakamura T. Solid State Ion, 1994, 70–71: 203–207

    Article  Google Scholar 

  12. Zhao Y, Daemen LL. J Am Chem Soc, 2012, 134: 15042–15047

    Article  CAS  PubMed  Google Scholar 

  13. Deng Z, Radhakrishnan B, Ong SP. Chem Mater, 2015, 27: 3749–3755

    Article  CAS  Google Scholar 

  14. Maldonado-Manso P, Losilla ER, Martínez-Lara M, Aranda MAG, Bruque S, Mouahid FE, Zahir M. Chem Mater, 2003, 15: 1879–1885

    Article  CAS  Google Scholar 

  15. Arbi K, París MA, Sanz J. Dalton Trans, 2011, 40: 10195–10202

    Article  CAS  PubMed  Google Scholar 

  16. Gao Y, Nolan AM, Du P, Wu Y, Yang C, Chen Q, Mo Y, Bo SH. Chem Rev, 2020, 120: 5954–6008

    Article  CAS  PubMed  Google Scholar 

  17. Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y. Chem Rev, 2016, 116: 140–162

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Q, Pan L, Li YJ, Chen LQ, Shi SQ. Rare Met, 2018, 37: 497–503

    Article  CAS  Google Scholar 

  19. Gao Y, Li N, Wu Y, Yang W, Bo SH. Adv Energy Mater, 2021, 11: 2100325

    Article  CAS  Google Scholar 

  20. Fuchs T, Culver SP, Till P, Zeier WG. ACS Energy Lett, 2019, 5: 146–151

    Article  Google Scholar 

  21. Zhou M, Bai P, Ji X, Yang J, Wang C, Xu Y. Adv Mater, 2021, 33: 2003741

    Article  CAS  Google Scholar 

  22. He X, Bai Q, Liu Y, Nolan AM, Ling C, Mo Y. Adv Energy Mater, 2019, 9: 1902078

    Article  CAS  Google Scholar 

  23. Canepa P, Bo SH, Sai Gautam G, Key B, Richards WD, Shi T, Tian Y, Wang Y, Li J, Ceder G. Nat Commun, 2017, 8: 1759

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G. Nat Mater, 2015, 14: 1026–1031

    Article  CAS  PubMed  Google Scholar 

  25. Bührer W, Brüesch P. Solid State Commun, 1975, 16: 155–158

    Article  Google Scholar 

  26. Zeller HR, Brüesch P, Pietronero L, Strässler S. Lattice Dynamics and Ionic Motion in Superionic Conductors. In: Mahan G, Roth W, Eds. Superionic Conductors. New York:Plenum Press, 1976

    Google Scholar 

  27. Wakamura K. Phys Rev B, 1997, 56: 11593–11599

    Article  CAS  Google Scholar 

  28. Wakamura K. Phys Rev B, 1999, 59: 3560–3568

    Article  CAS  Google Scholar 

  29. Danilkin SA, Skomorokhov AN, Hoser A, Fuess H, Rajevac V, Bickulova NN. J Alloys Compd, 2003, 361: 57–61

    Article  CAS  Google Scholar 

  30. Bikkulova NN, Beskrovnyĭ AI, Yadrovskiĭ EL, Skomorokhov AN, Stepanov YM, Mikolaĭchuk AN, Sagdatkireeva MB, Karimov LZ. Crystallogr Rep, 2007, 52: 453–455

    Article  CAS  Google Scholar 

  31. Alekperov O, Jahangirli Z, Paucar R. Phys Status Solidi B, 2016, 253: 2049–2055

    Article  CAS  Google Scholar 

  32. Muy S, Schlem R, Shao-Horn Y, Zeier WG. Adv Energy Mater, 2021, 11: 2002787

    Article  CAS  Google Scholar 

  33. Muy S, Bachman JC, Giordano L, Chang HH, Abernathy DL, Bansal D, Delaire O, Hori S, Kanno R, Maglia F, Lupart S, Lamp P, Shao-Horn Y. Energy Environ Sci, 2018, 11: 850–859

    Article  CAS  Google Scholar 

  34. Krauskopf T, Muy S, Culver SP, Ohno S, Delaire O, Shao-Horn Y, Zeier WG. J Am Chem Soc, 2018, 140: 14464–14473

    Article  CAS  PubMed  Google Scholar 

  35. Famprikis T, Kudu ÖU, Dawson JA, Canepa P, Fauth F, Suard E, Zbiri M, Dambournet D, Borkiewicz OJ, Bouyanfif H, Emge SP, Cretu S, Chotard JN, Grey CP, Zeier WG, Islam MS, Masquelier C. J Am Chem Soc, 2020, 142: 18422–18436

    Article  CAS  PubMed  Google Scholar 

  36. Famprikis T, Bouyanfif H, Canepa P, Zbiri M, Dawson JA, Suard E, Fauth F, Playford HY, Dambournet D, Borkiewicz OJ, Courty M, Clemens O, Chotard JN, Islam MS, Masquelier C. Chem Mater, 2021, 33: 5652–5667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kraft MA, Culver SP, Calderon M, Böcher F, Krauskopf T, Senyshyn A, Dietrich C, Zevalkink A, Janek J, Zeier WG. J Am Chem Soc, 2017, 139: 10909–10918

    Article  CAS  PubMed  Google Scholar 

  38. Bernges T, Culver SP, Minafra N, Koerver R, Zeier WG. Inorg Chem, 2018, 57: 13920–13928

    Article  CAS  PubMed  Google Scholar 

  39. Schlem R, Bernges T, Li C, Kraft MA, Minafra N, Zeier WG. ACS Appl Energy Mater, 2020, 3: 3684–3691

    Article  CAS  Google Scholar 

  40. Schlem R, Ghidiu M, Culver SP, Hansen AL, Zeier WG. ACS Appl Energy Mater, 2019, 3: 9–18

    Article  Google Scholar 

  41. Schlem R, Muy S, Prinz N, Banik A, Shao-Horn Y, Zobel M, Zeier WG. Adv Energy Mater, 2020, 10: 1903719

    Article  CAS  Google Scholar 

  42. Kraft MA, Ohno S, Zinkevich T, Koerver R, Culver SP, Fuchs T, Senyshyn A, Indris S, Morgan BJ, Zeier WG. J Am Chem Soc, 2018, 140: 16330–16339

    Article  CAS  PubMed  Google Scholar 

  43. Krauskopf T, Pompe C, Kraft MA, Zeier WG. Chem Mater, 2017, 29: 8859–8869

    Article  CAS  Google Scholar 

  44. Culver SP, Squires AG, Minafra N, Armstrong CWF, Krauskopf T, Böcher F, Li C, Morgan BJ, Zeier WG. J Am Chem Soc, 2020, 142: 21210–21219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muy S, Voss J, Schlem R, Koerver R, Sedlmaier SJ, Maglia F, Lamp P, Zeier WG, Shao-Horn Y. iScience, 2019, 16: 270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gordiz K, Muy S, Zeier WG, Shao-Horn Y, Henry A. Cell Rep Phys Sci, 2021, 2: 100431

    Article  CAS  Google Scholar 

  47. Agne MT, Frerichs JE, Wang S, Dewald G, Bernges T, Vargas-Barbosa NM, Mo Y, Hansen MR, Zeier WG. 2022, preprint at https://chemrxiv.org/engage/chemrxiv/article-details/624af421f6c486-bab7119327

  48. He X, Zhu Y, Mo Y. Nat Commun, 2017, 8: 15893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang J, Zhang L, Wang H, Zhao J, Cheng J, E W. J Chem Phys, 2021, 154: 094703

    Article  CAS  PubMed  Google Scholar 

  50. Brehm M, Thomas M, Gehrke S, Kirchner B. J Chem Phys, 2020, 152: 164105

    Article  CAS  PubMed  Google Scholar 

  51. Aroyo MI, Kirov A, Capillas C, Perez-Mato JM, Wondratschek H. Acta Crystlogr Found Crystlogr, 2006, 62: 115–128

    Article  Google Scholar 

  52. Aroyo MI, Perez-Mato JM, Capillas C, Kroumova E, Ivantchev S, Madariaga G, Kirov A, Wondratschek H. Z für Kristallographie-Crystline Mater, 2006, 221: 15–27

    Article  CAS  Google Scholar 

  53. Aroyo MI, Perez-Mato JM, Orobengoa D, Tasci E, de la Flor G, Kirov A. Bulg Chem Commun, 2011, 43: 183–197

    CAS  Google Scholar 

  54. Tietz F, Wegener T, Gerhards MT, Giarola M, Mariotto G. Solid State Ion, 2013, 230: 77–82

    CAS  Google Scholar 

  55. Rettenwander D, Welzl A, Cheng L, Fleig J, Musso M, Suard E, Doeff MM, Redhammer GJ, Amthauer G. Inorg Chem, 2015, 54: 10440–10449

    Article  CAS  PubMed  Google Scholar 

  56. Yu S, Siegel DJ. Chem Mater, 2017, 29: 9639–9647

    Article  CAS  Google Scholar 

  57. Skapin A. Solid State Ion, 2000, 133: 129–138

    Article  CAS  Google Scholar 

  58. Irvine JTS, Sinclair DC, West AR. Adv Mater, 1990, 2: 132–138

    Article  CAS  Google Scholar 

  59. Vineyard GH. J Phys Chem Solids, 1957, 3: 121–127

    Article  CAS  Google Scholar 

  60. Dobson TW, Wager JF, van Vechten JA. Phys Rev B, 1989, 40: 2962–2967

    Article  CAS  Google Scholar 

  61. Rice MJ, Roth WL. J Solid State Chem, 1972, 4: 294–310

    Article  CAS  Google Scholar 

  62. Haas CW. J Solid State Chem, 1973, 7: 155–157

    Article  CAS  Google Scholar 

  63. Brenner TM, Gehrmann C, Korobko R, Livneh T, Egger DA, Yaffe O. Phys Rev Mater, 2020, 4: 115402

    Article  CAS  Google Scholar 

  64. Gupta MK, Ding J, Osti NC, Abernathy DL, Arnold W, Wang H, Hood Z, Delaire O. Energy Environ Sci, 2021, 14: 6554–6563

    Article  CAS  Google Scholar 

  65. Krenzer G, Kim CE, Tolborg K, Morgan BJ, Walsh A. J Mater Chem A, 2022, 10: 2295–2304

    Article  CAS  Google Scholar 

  66. Ding J, Niedziela JL, Bansal D, Wang J, He X, May AF, Ehlers G, Abernathy DL, Said A, Alatas A, Ren Y, Arya G, Delaire O. Proc Natl Acad Sci USA, 2020, 117: 3930–3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22222204). We also thank Prof. Qianli Chen and Zhijun Fan for their discussion on analysis of Raman spectra.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Cheng or Shou-Hang Bo.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Huang, J., Cheng, J. et al. Correlate phonon modes with ion transport via isotope substitution. Sci. China Chem. 66, 768–777 (2023). https://doi.org/10.1007/s11426-022-1488-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1488-9

Keywords

Navigation