Skip to main content
Log in

Synergy of first- and second-sphere interactions in a covalent organic framework boosts highly selective platinum uptake

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Platinum recovery from waste electrical and electronic equipment (WEEE) in highly acidic solutions is significant to the electronics industry and environmental remediation. However, the lack of ingenious design and synergetic coordination gives rise to unsatisfied PtCl42− extraction capacities and selectivities in most previously reported adsorbents (e.g., polymeric and inorganic materials). Herein, we proposed a synergistic strategy that realizes highly selective PtCl42− uptake through first- and second-sphere coordinations. The proof-of-concept imine-linked covalent organic framework (SCU-COF-3) was found to chelate PtCl42−via the direct N⋯Pt coordination and the synergistically interlaminar N—H⋯Cl hydrogen bonds, which was disclosed by the comprehensive analysis of extended X-ray adsorption fine structure (EXAFS) characterizations and density functional theory (DFT) calculations. The unique adsorption mechanism imparts a superior adsorption capacity (168.4 mg g−1) and extraordinary Pt(II) selectivity to SCU-COF-3 under static conditions. In addition, SCU-COF-3 exhibits an upgraded distribution coefficient of 1.62 × 105 mL g−1, one order of magnitude higher than those of reported natural adsorbents. Specifically, SCU-COF-3 can extract PtCl42− quantitatively from a simulated acidic waste solution coexisting with other 12 competitive ions, suggesting its promising application in practical scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Izatt RM, Izatt SR, Izatt NE, Krakowiak KE, Bruening RL, Navarro L. Green Chem, 2015, 17: 2236–2245

    Article  CAS  Google Scholar 

  2. Cotton AS. Chemistry of Precious Metals. Dordrecht: Springer, 1997

    Book  Google Scholar 

  3. Dubey S, Banerjee S, Upadhyay SN, Sharma YC. J Mol Liquids, 2017, 240: 656–677

    Article  CAS  Google Scholar 

  4. Zhang J, Chen L, Dai X, Zhu L, Xiao C, Xu L, Zhang Z, Alekseev EV, Wang Y, Zhang C, Zhang H, Wang Y, Diwu J, Chai Z, Wang S. Chem, 2019, 5: 977–994

    Article  CAS  Google Scholar 

  5. Mosai AK, Chimuka L, Cukrowska EM, Kotzé IA, Tutu H. Chemosphere, 2020, 239: 124768

    Article  CAS  PubMed  Google Scholar 

  6. Wojnicki M, Socha RP, Luty-Błocho M, Fitzner K. Reac Kinet Mech Cat, 2017, 120: 715–734

    Article  CAS  Google Scholar 

  7. Ogata F, Kawasaki N. J Environ Chem Eng, 2013, 1: 1013–1019

    Article  CAS  Google Scholar 

  8. Hong Y, Thirion D, Subramanian S, Yoo M, Choi H, Kim HY, Stoddart JF, Yavuz CT. Proc Natl Acad Sci USA, 2020, 117: 16174–16180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muşină A, Bocokić V, Lavric V, van Zutphen S. Ind Eng Chem Res, 2014, 53: 13362–13369

    Article  Google Scholar 

  10. Grad O, Ciopec M, Negrea A, Duţeanu N, Vlase G, Negrea P, Dumitrescu C, Vlase T, Vodă R. Sci Rep, 2021, 11: 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Graves BJ, Hodgson DJ, Van Kralingen CG, Reedijk J. Inorg Chem, 1978, 17: 3007–3011

    Article  CAS  Google Scholar 

  12. Dong CC, Xiang JF, Xu LJ, Gong HY. Tetrahedron Lett, 2018, 59: 264–267

    Article  CAS  Google Scholar 

  13. Liu W, Das PJ, Colquhoun HM, Stoddart JF. CCS Chem, 2022, 4: 755–784

    Article  CAS  Google Scholar 

  14. Lim CR, Lin S, Yun YS. J Hazard Mater, 2020, 387: 121689

    Article  CAS  PubMed  Google Scholar 

  15. Liu W, Oliver AG, Smith BD. J Am Chem Soc, 2018, 140: 6810–6813

    Article  CAS  PubMed  Google Scholar 

  16. Wu H, Jones LO, Wang Y, Shen D, Liu Z, Zhang L, Cai K, Jiao Y, Stern CL, Schatz GC, Stoddart JF. ACS Appl Mater Interfaces, 2020, 12: 38768–38777

    Article  CAS  PubMed  Google Scholar 

  17. Zhou L, Bosscher M, Zhang C, Özçubukçu S, Zhang L, Zhang W, Li CJ, Liu J, Jensen MP, Lai L, He C. Nat Chem, 2014, 6: 236–241

    Article  CAS  PubMed  Google Scholar 

  18. Sather AC, Berryman OB, Rebek Jr. J. J Am Chem Soc, 2010, 132: 13572–13574

    Article  CAS  PubMed  Google Scholar 

  19. Blight BA, Wisner JA, Jennings MC. Chem Commun, 2006, 4593

  20. Blight B, Wisner J, Jennings M. Angew Chem Int Ed, 2007, 46: 2835–2838

    Article  CAS  Google Scholar 

  21. Steed JW. Coord Chem Rev, 2001, 215: 171–221

    Article  CAS  Google Scholar 

  22. Raymo FM, Stoddart JF. Chem Ber, 1996, 129: 981–990

    Article  CAS  Google Scholar 

  23. Diercks CS, Yaghi OM. Science, 2017, 355: eaal1585

    Article  PubMed  Google Scholar 

  24. Waller PJ, Gándara F, Yaghi OM. Acc Chem Res, 2015, 48: 3053–3063

    Article  CAS  PubMed  Google Scholar 

  25. Feng X, Ding X, Jiang D. Chem Soc Rev, 2012, 41: 6010–6022

    Article  CAS  PubMed  Google Scholar 

  26. Ding SY, Wang W. Chem Soc Rev, 2013, 42: 548–568

    Article  CAS  PubMed  Google Scholar 

  27. Haase F, Lotsch BV. Chem Soc Rev, 2020, 49: 8469–8500

    Article  CAS  PubMed  Google Scholar 

  28. Kandambeth S, Dey K, Banerjee R. J Am Chem Soc, 2019, 141: 1807–1822

    Article  CAS  PubMed  Google Scholar 

  29. Keller N, Bein T. Chem Soc Rev, 2021, 50: 1813–1845

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Yadav P, Loh KP. Chem Soc Rev, 2020, 49: 4835–4866

    Article  CAS  PubMed  Google Scholar 

  31. Liu R, Tan KT, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Chem Soc Rev, 2021, 50: 120–242

    Article  CAS  PubMed  Google Scholar 

  32. Das S, Feng J, Wang W. Annu Rev Chem Biomol Eng, 2020, 11: 131–153

    Article  PubMed  Google Scholar 

  33. Wang J, Zhuang S. Coord Chem Rev, 2019, 400: 213046

    Article  CAS  Google Scholar 

  34. Li Y, Guo X, Li X, Zhang M, Jia Z, Deng Y, Tian Y, Li S, Ma L. Angew Chem Int Ed, 2020, 59: 4168–4175

    Article  CAS  Google Scholar 

  35. Song Y, Li A, Li P, He L, Xu D, Wu F, Zhai F, Wu Y, Hu K, Wang S, Sheridan MV. Chem Mater, 2022, 34: 2771–2778

    Article  CAS  Google Scholar 

  36. Mollick S, Fajal S, Saurabh S, Mahato D, Ghosh SK. ACS Cent Sci, 2020, 6: 1534–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He L, Liu S, Chen L, Dai X, Li J, Zhang M, Ma F, Zhang C, Yang Z, Zhou R, Chai Z, Wang S. Chem Sci, 2019, 10: 4293–4305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bai Y, Chen L, He L, Li B, Chen L, Wu F, Chen L, Zhang M, Liu Z, Chai Z, Wang S. Chem, 2022, 8: 1442–1459

    Article  CAS  Google Scholar 

  39. Wang P, Chen X, Jiang Q, Addicoat M, Huang N, Dalapati S, Heine T, Huo F, Jiang D. Angew Chem Int Ed, 2019, 58: 15922–15927

    Article  CAS  Google Scholar 

  40. Das G, Skorjanc T, Sharma SK, Gándara F, Lusi M, Shankar Rao DS, Vimala S, Krishna Prasad S, Raya J, Han DS, Jagannathan R, Olsen JC, Trabolsi A. J Am Chem Soc, 2017, 139: 9558–9565

    Article  CAS  PubMed  Google Scholar 

  41. Ma H, Liao X, Liu X, Shi B. J Membrane Sci, 2006, 278: 373–380

    Article  CAS  Google Scholar 

  42. Wang H, Li C, Bao C, Liu L, Liu X. J Chem Eng Data, 2011, 56: 4203–4207

    Article  CAS  Google Scholar 

  43. Won SW, Kim S, Kotte P, Lim A, Yun YS. J Hazard Mater, 2013, 263: 391–397

    Article  CAS  PubMed  Google Scholar 

  44. Kim S, Song MH, Wei W, Yun YS. J Hazard Mater, 2015, 283: 657–662

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Lin S, Liu Y, Sarkar AK, Bediako JK, Kim HY, Yun YS. Small, 2019, 15: 1805242

    Article  Google Scholar 

  46. Dablemont C, Lang P, Mangeney C, Piquemal JY, Petkov V, Herbst F, Viau G. Langmuir, 2008, 24: 5832–5841

    Article  CAS  PubMed  Google Scholar 

  47. DeRita L, Resasco J, Dai S, Boubnov A, Thang HV, Hoffman AS, Ro I, Graham GW, Bare SR, Pacchioni G, Pan X, Christopher P. Nat Mater, 2019, 18: 746–751

    Article  CAS  PubMed  Google Scholar 

  48. Zhao J, Fu C, Ye K, Liang Z, Jiang F, Shen S, Zhao X, Ma L, Shadike Z, Wang X, Zhang J, Jiang K. Nat Commun, 2022, 13: 685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aguila B, Sun Q, Cassady HC, Shan C, Liang Z, AlEnizic AM, Nafadyc A, Wright JT, Meulenberg RW, Ma S. Angew Chem Int Ed, 2020, 59: 19618–19622

    Article  CAS  Google Scholar 

  50. Qian H, Meng F, Yang C, Yan X. Angew Chem Int Ed, 2020, 59: 17607–17613

    Article  CAS  Google Scholar 

  51. Mun JH, Chang YH, Shin DO, Yoon JM, Choi DS, Lee KM, Kim JY, Cha SK, Lee JY, Jeong JR, Kim YH, Kim SO. Nano Lett, 2013, 13: 5720–5726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21825601, 21790374, U1967217, 21906116, 22176139, 21906114), the National Key R&D Program of China (2018YFB1900203), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_3212), the Postdoctoral Science Foundation of China (2021M692346, 2021M702390) and the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (WDZC202102). We thank Beijing TOP-UNISTAR Science & Technology Co., Ltd. for their support in EXAFS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Dai, Long Chen or Shuao Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2022_1484_MOESM1_ESM.docx

Synergy of first- and second-sphere interactions in a covalent organic framework boosts highly selective platinum uptake

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Li, B., Ma, Z. et al. Synergy of first- and second-sphere interactions in a covalent organic framework boosts highly selective platinum uptake. Sci. China Chem. 66, 783–790 (2023). https://doi.org/10.1007/s11426-022-1484-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1484-0

Keywords

Navigation