Skip to main content
Log in

A novel 3D sp2 carbon-linked covalent organic framework as a platform for efficient electro-extraction of uranium

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Extracting uranium from seawater offers opportunities for sustainable nuclear fuel supply, but the task is quite challenging due to the low uranium concentration (∼3 ppb) in seawater. Here, based on the Knoevenagel condensation reaction of aldehyde and acetonitrile groups, a novel stable sp2 carbon-linked three-dimensional covalent organic framework (3D COF), TFPM-PDAN-AO was prepared as a porous platform for uranium extraction from seawater. The TFPM-PDAN-AO designed with regular 3D pore channel of 7.12 Å provides a specific channel for uranyl diffusion, which exhibits high selectivity and fast kinetics for uranium adsorption. Meanwhile, the superior stability and optoelectronic properties enable it an excellent porous platform for uranium electroextraction. By applying alternating voltages between −5 and 0 V, uranyl ions can rapidly migrate and enrich into the porous structure of TFPM-PDAN-AO, then inducing the electrodeposition of uranium compounds to form the charge neutral species (Na2O(UO3H2O)x) with an unprecedentedly high adsorption capacity of 4,685 mg g−1. This work not only expands the application prospects of functionalized 3D COFs, but also provides a technical support for the electrodeposition adsorption of uranium from seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Z, Meng Q, Ma R, Wang Z, Yang Y, Sha H, Ma X, Ruan X, Zou X, Yuan Y, Zhu G. Chem, 2020, 6: 1683–1691

    Article  CAS  Google Scholar 

  2. Li Y, Guo X, Li X, Zhang M, Jia Z, Deng Y, Tian Y, Li S, Ma L. Angew Chem Int Ed, 2020, 59: 4168–4175

    Article  CAS  Google Scholar 

  3. Yu F, Zhu Z, Wang S, Peng Y, Xu Z, Tao Y, Xiong J, Fan Q, Luo F. Chem Eng J, 2020, 412: 127558

    Article  Google Scholar 

  4. Liu T, Zhang X, Wang H, Chen M, Yuan Y, Zhang R, Xie Z, Liu Y, Zhang H, Wang N. Chem Eng J, 2021, 412: 128700

    Article  CAS  Google Scholar 

  5. Yang H, Liu X, Hao M, Xie Y, Wang X, Tian H, Waterhouse GIN, Kruger PE, Telfer SG, Ma S. Adv Mater, 2021, 33: 2106621

    Article  CAS  Google Scholar 

  6. Cui WR, Li FF, Xu RH, Zhang CR, Chen XR, Yan RH, Liang RP, Qiu JD. Angew Chem Int Ed, 2020, 59: 2–9

    Article  Google Scholar 

  7. Cui WR, Zhang CR, Jiang W, Li FF, Liang RP, Liu J, Qiu JD. Nat Commun, 2020, 11: 436

    Article  CAS  Google Scholar 

  8. Zhang CR, Cui WR, Xu RH, Chen XR, Jiang W, Wu YD, Yan RH, Liang RP, Qiu JD. CCS Chem, 2021, 3: 168–179

    Article  CAS  Google Scholar 

  9. Gao Z, Wang Y, Lin Y, Zheng Z, Liu Y, Jing Q, Luo F. Sci China Chem, 2022, 65: 1544–1551

    Article  CAS  Google Scholar 

  10. Liu W, Dai X, Bai Z, Wang Y, Yang Z, Zhang L, Xu L, Chen L, Li Y, Gui D, Diwu J, Wang J, Zhou R, Chai Z, Wang S. Environ Sci Technol, 2017, 51: 3911–3921

    Article  CAS  Google Scholar 

  11. Cui WR, Zhang CR, Liang RP, Qiu JD. J Mater Chem A, 2021, 9: 25611–25620

    Article  CAS  Google Scholar 

  12. Zhang CR, Cui WR, Niu CP, Yi SM, Liang RP, Qi JX, Chen XJ, Jiang W, Zhang L, Qiu JD. Chem Eng J, 2022, 428: 131178

    Article  CAS  Google Scholar 

  13. Zhang C, Li X, Chen Z, Wen T, Huang S, Hayat T, Alsaedi A, Wang X. Sci China Chem, 2018, 61: 281–293

    Article  CAS  Google Scholar 

  14. Yan RH, Cui WR, Zhang CR, Li XJ, Huang J, Jiang W, Liang RP, Qiu JD. Chem Eng J, 2021, 420: 129658

    Article  CAS  Google Scholar 

  15. Zhang L, Pu N, Yu B, Ye G, Chen J, Xu S, Ma S. ACS Appl Mater Interfaces, 2020, 12: 3688–3696

    Article  CAS  Google Scholar 

  16. Sun Q, Aguila B, Perman J, Ivanov AS, Bryantsev VS, Earl LD, Abney CW, Wojtas L, Ma S. Nat Commun, 2018, 9: 1644

    Article  Google Scholar 

  17. Wang Z, Ma R, Meng Q, Yang Y, Ma X, Ruan X, Yuan Y, Zhu G. J Am Chem Soc, 2021, 143: 14523–14529

    Article  CAS  Google Scholar 

  18. Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L, Sheng D, Wang Y, Diwu J, Wang J, Zhou R, Chai Z, Albrecht-Schmitt TE, Wang S. Nat Commun, 2017, 8: 15369

    Article  CAS  Google Scholar 

  19. Zhang H, Liu W, Li A, Zhang D, Li X, Zhai F, Chen L, Chen L, Wang Y, Wang S. Angew Chem Int Ed, 2019, 58: 16110–16114

    Article  CAS  Google Scholar 

  20. Cui WR, Zhang CR, Xu RH, Chen XR, Jiang W, Li YJ, Liang RP, Zhang L, Qiu JD. Appl Catal B-Environ, 2021, 294: 120250

    Article  CAS  Google Scholar 

  21. Zhang Y, Li H, Chang J, Guan X, Tang L, Fang Q, Valtchev V, Yan Y, Qiu S. Small, 2021, 17: 2006112

    Article  CAS  Google Scholar 

  22. Ben H, Yan G, Liu H, Ling C, Fan Y, Zhang X. Adv Funct Mater, 2022, 32: 2104519

    Article  CAS  Google Scholar 

  23. Shi X, Yi L, Deng H. Sci China Chem, 2022, 65: 1315–1320

    Article  CAS  Google Scholar 

  24. Chen X, Wang H. Sci China Chem, 2022, 65: 1453–1454

    Article  CAS  Google Scholar 

  25. Li Y, Yan C, Li Q, Cao L. Sci China Chem, 2022, 65: 1279–1285

    Article  CAS  Google Scholar 

  26. Li J, Zhao S, Wang B, Feng X. Sci China Chem, 2022, 65: 836–839

    Article  CAS  Google Scholar 

  27. Wang C, Wang Y, Ge R, Song X, Xing X, Jiang Q, Lu H, Hao C, Guo X, Gao Y, Jiang D. Chem Eur J, 2018, 24: 585–589

    Article  CAS  Google Scholar 

  28. Wang LL, Yang CX, Yan XP. Sci China Chem, 2018, 61: 1470–1474

    Article  CAS  Google Scholar 

  29. Zhang CR, Cui WR, Jiang W, Li FF, Wu YD, Liang RP, Qiu JD. Environ Sci-Nano, 2020, 7: 842–850

    Article  CAS  Google Scholar 

  30. Niu CP, Zhang CR, Cui WR, Yi SM, Liang RP, Qiu JD. J Hazard Mater, 2022, 425: 127951

    Article  CAS  Google Scholar 

  31. Li FF, Cui WR, Jiang W, Zhang CR, Liang RP, Qiu JD. J Hazard Mater, 2020, 392: 122333

    Article  CAS  Google Scholar 

  32. Xiong XH, Yu ZW, Gong LL, Tao Y, Gao Z, Wang L, Yin WH, Yang LX, Luo F. Adv Sci, 2019, 6: 1900547

    Article  Google Scholar 

  33. Sun Q, Aguila B, Earl LD, Abney CW, Wojtas L, Thallapally PK, Ma S. Adv Mater, 2018, 30: 1705479

    Article  Google Scholar 

  34. Song Y, Li A, Li P, He L, Xu D, Wu F, Zhai F, Wu Y, Hu K, Wang S, Sheridan MV. Chem Mater, 2022, 34: 2771–2778

    Article  CAS  Google Scholar 

  35. Lu Q, Ma Y, Li H, Guan X, Yusran Y, Xue M, Fang Q, Yan Y, Qiu S, Valtchev V. Angew Chem Int Ed, 2018, 57: 6042–6048

    Article  CAS  Google Scholar 

  36. Ding H, Li J, Xie G, Lin G, Chen R, Peng Z, Yang C, Wang B, Sun J, Wang C. Nat Commun, 2018, 9: 5234

    Article  CAS  Google Scholar 

  37. Bunck DN, Dichtel WR. Angew Chem Int Ed, 2012, 51: 1885–1889

    Article  CAS  Google Scholar 

  38. Liao L, Zhang Z, Guan X, Li H, Liu Y, Zhang M, Tang B, Valtchev V, Yan Y, Qiu S, Yao X, Fang Q. Chin J Chem, 2022, 40: 2081–2088

    Article  CAS  Google Scholar 

  39. Wang S, Li XX, Da L, Wang Y, Xiang Z, Wang W, Zhang YB, Cao D. J Am Chem Soc, 2021, 143: 15562–15566

    Article  CAS  Google Scholar 

  40. Jin E, Asada M, Xu Q, Dalapati S, Addicoat MA, Brady MA, Xu H, Nakamura T, Heine T, Chen Q, Jiang D. Science, 2017, 357: 673–676

    Article  CAS  Google Scholar 

  41. Jin E, Li J, Geng K, Jiang Q, Xu H, Xu Q, Jiang D. Nat Commun, 2018, 9: 4143

    Article  Google Scholar 

  42. Ma C, Gao J, Wang D, Yuan Y, Wen J, Yan B, Zhao S, Zhao X, Sun Y, Wang X, Wang N. Adv Sci, 2019, 6: 1900085

    Article  Google Scholar 

  43. Chen R, Shi J, Ma Y, Lin G, Lang X, Wang C. Angew Chem Int Ed, 2019, 58: 6430–6434

    Article  CAS  Google Scholar 

  44. Xu S, Richter M, Feng X. Acc Mater Res, 2021, 2: 252–265

    Article  CAS  Google Scholar 

  45. Yu Q, Yuan Y, Feng L, Feng T, Sun W, Wang N. Angew Chem Int Ed, 2020, 59: 15997–16001

    Article  CAS  Google Scholar 

  46. Yu J, Yuan L, Wang S, Lan J, Zheng L, Xu C, Chen J, Wang L, Huang Z, Tao W, Liu Z, Chai Z, Gibson JK, Shi W. CCS Chem, 2019, 1: 286–295

    CAS  Google Scholar 

  47. Wen R, Li Y, Zhang M, Guo X, Li X, Li X, Han J, Hu S, Tan W, Ma L, Li S. J Hazard Mater, 2018, 358: 273–285

    Article  CAS  Google Scholar 

  48. Wu T, Liu C, Kong B, Sun J, Gong Y, Liu K, Xie J, Pei A, Cui Y. ACS Cent Sci, 2019, 5: 719–726

    Article  CAS  Google Scholar 

  49. Liu C, Hsu PC, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J, Chu S, Cui Y. Nat Energy, 2017, 2: 17007

    Article  CAS  Google Scholar 

  50. Wang C, Helal AS, Wang Z, Zhou J, Yao X, Shi Z, Ren Y, Lee J, Chang JK, Fugetsu B, Li J. Adv Mater, 2021, 33: 2102633

    Article  CAS  Google Scholar 

  51. Wang W, Luo J, Wei W, Liu S, He J, Ma J. Chemosphere, 2021, 271: 129531

    Article  CAS  Google Scholar 

  52. Liu X, Xie Y, Hao M, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X. Adv Sci, 2022, 9: 2201735

    Article  CAS  Google Scholar 

  53. Zhang J, Zhou L, Jia Z, Li X, Qi Y, Yang C, Guo X, Chen S, Long H, Ma L. Nanoscale, 2020, 12: 24044–24053

    Article  CAS  Google Scholar 

  54. Ye H, Li TH, Huang YQ, Jin JM, Fei JY, Wu MB, Yao J. Chem Eng J, 2023, 451: 138615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22036003, 21976077) and the Natural Science Foundation of Jiangxi Province (20212ACB203009, 20212ACB203011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ding Qiu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CR., Qi, JX., Cui, WR. et al. A novel 3D sp2 carbon-linked covalent organic framework as a platform for efficient electro-extraction of uranium. Sci. China Chem. 66, 562–569 (2023). https://doi.org/10.1007/s11426-022-1466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1466-9

Keywords

Navigation