Abstract
The large energetic disorder has been regarded as a limitation for the further advance of organic solar cells (OSCs). The intramolecular energetic disorder, which originates from the molecular conformational diversity, is quite different for various non-fused-ring materials and of great importance for the corresponding device performance. In this work, the 2-ethylhexyl on A4T-16, an efficient completely non-fused-ring acceptor, is replaced with the 3-ethylheptyl to obtain a novel acceptor of A4T-3. The out-shifted branching position of 3-ethylheptyl reduces the steric hindrance effect, endowing A4T-3 with a more coplanar structure. As a result, A4T-3 exhibits a lower intramolecular energetic disorder than A4T-16, leading to a more uniform surface-electrostatic potential (ESP) distribution. Therefore, A4T-3 exhibits a smaller barrier for intramolecular electron transport and a higher electron mobility. Meanwhile, the lower ESP endows A4T-3 with reduced non-radiative energy loss when blending with the donor. When using PTVT-T as the donor, the A4T-3-based OSC exhibited comprehensively improved photovoltaic properties in comparison with the A4T-16-based one, delivering a high power conversion efficiency (PCE) of 14.26%. Notably, this is the first report of OSCs where both the donor and the acceptor are completely non-fused-ring materials. According to the material-only cost (MOC) evaluation, the cost of PTVT-T:A4T-3-based device is much lower than that of other high-performance OSCs, revealing the great potential of completely non-fused-ring photoactive materials for application-oriented OSCs.

This is a preview of subscription content, access via your institution.
References
Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161
Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Chem Rev, 2014, 114: 7006–7043
Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128
Tong Y, Xiao Z, Du X, Zuo C, Li Y, Lv M, Yuan Y, Yi C, Hao F, Hua Y, Lei T, Lin Q, Sun K, Zhao D, Duan C, Shao X, Li W, Yip HL, Xiao Z, Zhang B, Bian Q, Cheng Y, Liu S, Cheng M, Jin Z, Yang S, Ding L. Sci China Chem, 2020, 63: 758–765
Inganäs O. Adv Mater, 2018, 30: 1800388
Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv Mater, 2021, 33: 2102420
Wang J, Zheng Z, Zu Y, Wang Y, Liu X, Zhang S, Zhang M, Hou J. Adv Mater, 2021, 33: 2102787
Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J. Joule, 2022, 6: 171–184
Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 224–268
Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Liu Y, Meng L, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 1457–1497
Garcia-Belmonte G, Bisquert J. Appl Phys Lett, 2010, 96: 113301
Blakesley JC, Neher D. Phys Rev B, 2011, 84: 075210
He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell TP, Cao Y. Nat Photon, 2015, 9: 174–179
Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A. Nat Mater, 2013, 12: 1038–1044
Collins SD, Proctor CM, Ran NA, Nguyen TQ. Adv Energy Mater, 2016, 6: 1501721
Shi X, Nádaždy V, Perevedentsev A, Frost JM, Wang X, von Hauff E, MacKenzie RC, Nelson J. Phys Rev X, 2019, 9: 021038
Heumueller T, Burke TM, Mateker WR, Sachs-Quintana IT, Vandewal K, Brabec CJ, McGehee MD. Adv Energy Mater, 2015, 5: 1500111
Lee C, Lee JH, Lee HH, Nam M, Ko DH. Adv Energy Mater, 2022, 12: 2200275
Lee C, Yi A, Kim HJ, Nam M, Ko DH. Adv Energy Sustain Res, 2021, 2: 2100041
Xie S, Xia Y, Zheng Z, Zhang X, Yuan J, Zhou H, Zhang Y. Adv Funct Mater, 2018, 28: 1705659
Gao F, Himmelberger S, Andersson M, Hanifi D, Xia Y, Zhang S, Wang J, Hou J, Salleo A, Inganäs O. Adv Mater, 2015, 27: 3868–3873
Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y. Nat Photonics, 2020, 14: 300–305
Yuan J, Zhang C, Chen H, Zhu C, Cheung SH, Qiu B, Cai F, Wei Q, Liu W, Yin H, Zhang R, Zhang J, Liu Y, Zhang H, Liu W, Peng H, Yang J, Meng L, Gao F, So S, Li Y, Zou Y. Sci China Chem, 2020, 63: 1159–1168
Qin Y, Uddin MA, Chen Y, Jang B, Zhao K, Zheng Z, Yu R, Shin TJ, Woo HY, Hou J. Adv Mater, 2016, 28: 9416–9422
Yang C, Zhang S, Ren J, Gao M, Bi P, Ye L, Hou J. Energy Environ Sci, 2020, 13: 2864–2869
Yang M, Wei W, Zhou X, Wang Z, Duan C. Energy Mater, 2021, 1: 100008
Yang C, Zhang S, Hou J. Aggregate, 2022, 3: e111
Chen YN, Li M, Wang Y, Wang J, Zhang M, Zhou Y, Yang J, Liu Y, Liu F, Tang Z, Bao Q, Bo Z. Angew Chem Int Ed, 2020, 59: 22714–22720
Li C, Zhang X, Yu N, Gu X, Qin L, Wei Y, Liu X, Zhang J, Wei Z, Tang Z, Shi Q, Huang H. Adv Funct Mater, 2021, 32: 2108861
Xiao J, Jia X, Duan C, Huang F, Yip HL, Cao Y. Adv Mater, 2021, 33: 2008158
Yuan X, Zhao Y, Xie D, Pan L, Liu X, Duan C, Huang F, Cao Y. Joule, 2022, 6: 647–661
Yang C, Zhang S, Ren J, Bi P, Yuan X, Hou J. Chin Chem Lett, 2021, 32: 2274–2278
Yu ZP, Liu ZX, Chen FX, Qin R, Lau TK, Yin JL, Kong X, Lu X, Shi M, Li CZ, Chen H. Nat Commun, 2019, 10: 2152
Wen TJ, Liu ZX, Chen Z, Zhou J, Shen Z, Xiao Y, Lu X, Xie Z, Zhu H, Li CZ, Chen H. Angew Chem Int Ed, 2021, 60: 12964–12970
Ma L, Zhang S, Zhu J, Wang J, Ren J, Zhang J, Hou J. Nat Commun, 2021, 12: 5093
Lu H, Wang X, Wang H, Zhang A, Zheng X, Yu N, Tang Z, Xu X, Liu Y, Chen YN, Bo Z. Sci China Chem, 2022, 65: 594–601
Li J, Li H, Ma L, Xu Y, Cui Y, Wang J, Ren J, Zhu J, Zhang S, Hou J. Small Methods, 2022, 6: 2200007
Ren J, Bi P, Zhang J, Liu J, Wang J, Xu Y, Wei Z, Zhang S, Hou J. Natl Sci Rev, 2021, 8: nwab031
Swick SM, Zhu W, Matta M, Aldrich TJ, Harbuzaru A, Lopez Navarrete JT, Ponce Ortiz R, Kohlstedt KL, Schatz GC, Facchetti A, Melkonyan FS, Marks TJ. Proc Natl Acad Sci USA, 2018, 115: E8341–E8348
Aldrich TJ, Matta M, Zhu W, Swick SM, Stern CL, Schatz GC, Facchetti A, Melkonyan FS, Marks TJ. J Am Chem Soc, 2019, 141: 3274–3287
Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205
Wu JL, Chen FC, Hsiao YS, Chien FC, Chen P, Kuo CH, Huang MH, Hsu CS. ACS Nano, 2011, 5: 959–967
Malliaras GG, Salem JR, Brock PJ, Scott C. Phys Rev B, 1998, 58: R13411–R13414
Mozer AJ, Sariciftci NS, Lutsen L, Vanderzande D, Österbacka R, Westerling M, Juška G. Appl Phys Lett, 2005, 86: 112104
Lenes M, Morana M, Brabec CJ, Blom PWM. Adv Funct Mater, 2009, 19: 1106–1111
Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM. Appl Phys Lett, 2005, 86: 123509
Pasveer WF, Cottaar J, Tanase C, Coehoorn R, Bobbert PA, Blom PWM, de Leeuw DM, Michels MAJ. Phys Rev Lett, 2005, 94: 206601
Lee HKH, Li Z, Constantinou I, So F, Tsang SW, So SK. Adv Energy Mater, 2014, 4: 1400768
Urbach F. Phys Rev, 1953, 92: 1324
Nikolis VC, Mischok A, Siegmund B, Kublitski J, Jia X, Benduhn J, Hörmann U, Neher D, Gather MC, Spoltore D, Vandewal K. Nat Commun, 2019, 10: 3706
Lu T, Chen F. J Comput Chem, 2012, 33: 580–592
Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, Wu H, Troughton J, Watson T, Bryant D, Nelson J. Phys Rev Appl, 2015, 4: 014020
Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089
Xu Y, Yao H, Ma L, Hong L, Li J, Liao Q, Zu Y, Wang J, Gao M, Ye L, Hou J. Angew Chem Int Ed, 2020, 59: 9004–9010
Acknowledgements
This work was financially supported from the National Key Research and Development Program of China (2019YFE0116700), the Basic and Applied Basic Research Major Program of Guangdong Province (2019B030302007), and the National Natural Science Foundation of China (21835006 and 22075017).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest The authors declare no conflict of interest.
Additional information
Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Supplementary Information
11426_2022_1449_MOESM1_ESM.pdf
Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors
Rights and permissions
About this article
Cite this article
Yang, C., Ma, L., Xu, Y. et al. Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors. Sci. China Chem. 65, 2604–2612 (2022). https://doi.org/10.1007/s11426-022-1449-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-022-1449-4
Keywords
- completely non-fused-ring
- intramolecular energetic disorder
- charge transport
- energy loss
- low cost