Skip to main content
Log in

Constructing an efficient deep-blue TADF emitter by host-guest interactions towards solution-processed OLEDs with narrowband emission

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

High-efficiency thermally activated delayed fluorescence (TADF) emitters and corresponding well-designed solution-processed organic light emitting diodes (OLEDs) are presently attractive due to their potential for exploiting large-area flexible displays. In this context, we innovatively integrate 2,12-di-tert-butyl-5,9-dioxa-13b-boronaphtho [3,2,1] anthracene as the acceptor with 3,6-bis (3,6-di-tert-butylcarbazol-N-yl) carbazole as the donor to construct a rigid deep-blue emitter, TB-3tBuCz, which exhibits a narrow emission with full-width-at-half-maximum (FWHM) of 46 nm. TB-3tBuCz itself dispalys no TADF characteristics both in solution or in pure film states. However, the significant TADF behavior can be observed when TB-3tBuCz is doped with 2,6-DCzPPy host due to the formation of exciplex-like species in 2,6-DCzPPy/TB-3tBuCz system. It is also found that the discernible spin-flip of triplet excitons is feasible when the S1/T1 states of the formed exciplex stay slightly lower than S1 and T1 states of TB-3tBuCz for the other host/TB-3tBuCz systems. Eventually, thanks to the synergetic effect of rigid structure and favorable photophysical properties of TB-3tBuCz, the solution-processed OLEDs based on 2,6-DCzPPy/TB-3tBuCz as emitting layer has achieved the significantly improved external quantum efficiency (EQE) of 14.6% with suppressed efficiency roll-off. The CIE1931 coordinate of (0.158, 0.052) is typically in deep-blue region. Note that, this EQE value is among the highest echelon of solution-processed OLEDs with deep-blue emission by utilizing boron-containing TADF emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang J, Liang B, Wei J, Li Z, Xu Y, Yang T, Li C, Wang Y. Angew Chem Int Ed, 2021, 60: 15335–15339

    Article  CAS  Google Scholar 

  2. Li Y, Li Z, Zhang J, Han C, Duan C, Xu H. Adv Funct Mater, 2021, 31: 2011169

    Article  CAS  Google Scholar 

  3. Li X, Shen S, Zhang C, Liu M, Lu J, Zhu L. Sci China Chem, 2021, 64: 534–546

    Article  CAS  Google Scholar 

  4. Chen F, Zhao L, Wang X, Yang Q, Li W, Tian H, Shao S, Wang L, Jing X, Wang F. Sci China Chem, 2021, 64: 547–551

    Article  Google Scholar 

  5. Liu Y, Li C, Ren Z, Yan S, Bryce MR. Nat Rev Mater, 2018, 3: 18020

    Article  CAS  Google Scholar 

  6. Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv Mater, 2014, 26: 7931–7958

    Article  CAS  PubMed  Google Scholar 

  7. Cui LS, Gillett AJ, Zhang SF, Ye H, Liu Y, Chen XK, Lin ZS, Evans EW, Myers WK, Ronson TK, Nakanotani H, Reineke S, Bredas JL, Adachi C, Friend RH. Nat Photon, 2020, 14: 636–642

    Article  CAS  Google Scholar 

  8. Yang Y, Wang S, Zhu Y, Wang Y, Zhan H, Cheng Y. Adv Funct Mater, 2018, 28: 1706916

    Article  Google Scholar 

  9. Lin TA, Chatterjee T, Tsai WL, Lee WK, Wu MJ, Jiao M, Pan KC, Yi CL, Chung CL, Wong KT, Wu CC. Adv Mater, 2016, 28: 6976–6983

    Article  CAS  PubMed  Google Scholar 

  10. Yersin H, Czerwieniec R, Mataranga-Popa L, Mewes J, Cheng G, Che CM, Saigo M, Kimura S, Miyata K, Onda K. Adv Funct Mater, 2022, 32: 2201772

    Article  CAS  Google Scholar 

  11. Cai Z, Wu X, Liu H, Guo J, Yang D, Ma D, Zhao Z, Tang BZ. Angew Chem Int Ed, 2021, 60: 23635–23640

    Article  CAS  Google Scholar 

  12. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234–238

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Nakagawa T, MacDonald J, Zhang Q, Nomura H, Miyazaki H, Adachi C. Adv Mater, 2013, 25: 3319–3323

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Zhang Q, Nomura H, Miyazaki H, Adachi C. Appl Phys Lett, 2014, 105: 013301

    Article  Google Scholar 

  15. Takahashi T, Shizu K, Yasuda T, Togashi K, Adachi C. Sci Tech Adv Mater, 2014, 15: 034202

    Article  Google Scholar 

  16. Liu Y, Hua L, Zhao Z, Ying S, Ren Z, Yan S. Adv Sci, 2021, 8: 2101326

    Article  CAS  Google Scholar 

  17. Lee SY, Yasuda T, Yang YS, Zhang Q, Adachi C. Angew Chem Int Ed, 2014, 53: 6402–6406

    Article  CAS  Google Scholar 

  18. Rajamalli P, Senthilkumar N, Gandeepan P, Huang PY, Huang MJ, Ren-Wu CZ, Yang CY, Chiu MJ, Chu LK, Lin HW, Cheng CH. J Am Chem Soc, 2016, 138: 628–634

    Article  CAS  PubMed  Google Scholar 

  19. Li Z, Yang D, Han C, Zhao B, Wang H, Man Y, Ma P, Chang P, Ma D, Xu H. Angew Chem Int Ed, 2021, 60: 14846–14851

    Article  CAS  Google Scholar 

  20. Kawasumi K, Wu T, Zhu T, Chae HS, Van Voorhis T, Baldo MA, Swager TM. J Am Chem Soc, 2015, 137: 11908–11911

    Article  CAS  PubMed  Google Scholar 

  21. Wang S, Yan X, Cheng Z, Zhang H, Liu Y, Wang Y. Angew Chem Int Ed, 2015, 54: 13068–13072

    Article  CAS  Google Scholar 

  22. Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C. Nat Photon, 2014, 8: 326–332

    Article  CAS  Google Scholar 

  23. Luo Y, Li S, Zhao Y, Li C, Pang Z, Huang Y, Yang M, Zhou L, Zheng X, Pu X, Lu Z. Adv Mater, 2020, 32: 2001248

    Article  CAS  Google Scholar 

  24. Ahn DH, Kim SW, Lee H, Ko IJ, Karthik D, Lee JY, Kwon JH. Nat Photon, 2019, 13: 540–546

    Article  CAS  Google Scholar 

  25. Kondo Y, Yoshiura K, Kitera S, Nishi H, Oda S, Gotoh H, Sasada Y, Yanai M, Hatakeyama T. Nat Photon, 2019, 13: 678–682

    Article  CAS  Google Scholar 

  26. Ahn DH, Lee H, Kim SW, Karthik D, Lee J, Jeong H, Lee JY, Kwon JH. ACS Appl Mater Interfaces, 2019, 11: 14909–14916

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Zhang D, Wei J, Liu Z, Lu Y, Duan L. Angew Chem Int Ed, 2019, 58: 16912–16917

    Article  CAS  Google Scholar 

  28. Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J, Ono Y, Ikuta T. Adv Mater, 2016, 28: 2777–2781

    Article  CAS  PubMed  Google Scholar 

  29. Han J, Chen Y, Li N, Huang Z, Yang C. Aggregate, 2022, 3: e182

    CAS  Google Scholar 

  30. Madayanad SS, Hall D, Beljonne D, Olivier Y, Zysman-Colman E. Adv Funct Mater, 2020, 30: 1908677

    Article  Google Scholar 

  31. Jiang P, Miao J, Cao X, Xia H, Pan K, Hua T, Lv X, Huang Z, Zou Y, Yang C. Adv Mater, 2022, 34: 2106954

    Article  CAS  Google Scholar 

  32. Cai X, Xue J, Li C, Liang B, Ying A, Tan Y, Gong S, Wang Y. Angew Chem Int Ed, 2022, 61: e202200337

    CAS  Google Scholar 

  33. Zou Y, Hu J, Yu M, Miao J, Xie Z, Qiu Y, Cao X, Yang C. Adv Mater, 2022, 34: 2201442

    Article  CAS  Google Scholar 

  34. Lv X, Miao J, Liu M, Peng Q, Zhong C, Hu Y, Cao X, Wu H, Yang Y, Zhou C, Ma J, Zou Y, Yang C. Angew Chem Int Ed, 2022, 61: e2022001588

  35. Wu X, Su BK, Chen DG, Liu D, Wu CC, Huang ZX, Lin TC, Wu CH, Zhu M, Li EY, Hung WY, Zhu W, Chou PT. Nat Photon, 2021, 15: 780–786

    Article  CAS  Google Scholar 

  36. Li C, Harrison AK, Liu Y, Zhao Z, Zeng C, Dias FB, Ren Z, Yan S, Bryce MR. Angew Chem Int Ed, 2022, 61

  37. Hua L, Yan S, Ren Z. Acta Polym Sin, 2020, 51: 457

    CAS  Google Scholar 

  38. Gu F, Li Y, Jiang T, Su J, Ma X. CCS Chem, 2021, 4: 3014–3022

    Article  Google Scholar 

  39. Ikeda N, Oda S, Matsumoto R, Yoshioka M, Fukushima D, Yoshiura K, Yasuda N, Hatakeyama T. Adv Mater, 2020, 32: 2004072

    Article  CAS  Google Scholar 

  40. Chen F, Hu J, Wang X, Shao S, Wang L, Jing X, Wang F. Sci China Chem, 2020, 63: 1112–1120

    Article  CAS  Google Scholar 

  41. Kim HJ, Godumala M, Kim SK, Yoon J, Kim CY, Park H, Kwon JH, Cho MJ, Choi DH. Adv Opt Mater, 2020, 8: 1902175

    Article  CAS  Google Scholar 

  42. Kim HJ, Kang H, Jeong J, Park SH, Koh CW, Kim CW, Woo HY, Cho MJ, Park S, Choi DH. Adv Funct Mater, 2021, 31: 2102588

    Article  CAS  Google Scholar 

  43. Tu L, Xie Y, Li Z, Tang B. SmartMat, 2021, 2: 326–346

    Article  CAS  Google Scholar 

  44. Tsai MH, Ke TH, Lin HW, Wu CC, Chiu SF, Fang FC, Liao YL, Wong KT, Chen YH, Wu CI. ACS Appl Mater Interfaces, 2009, 1: 567–574

    Article  CAS  PubMed  Google Scholar 

  45. Chapran M, Pander P, Vasylieva M, Wiosna-Salyga G, Ulanski J, Dias FB, Data P. ACS Appl Mater Interfaces, 2019, 11: 13460–13471

    Article  CAS  PubMed  Google Scholar 

  46. Li B, Song X’, Jiang X, Li Z, Guo F, Wang Y, Zhao L, Zhang Y. Chin Chem Lett, 2020, 31: 1188–1192

    Article  CAS  Google Scholar 

  47. Lu T, Chen FW. Acta Chim Sin, 2011, 69: 2393–2406

    CAS  Google Scholar 

  48. Liu Y, Xie Y, Hua L, Tong X, Ying S, Ren Z, Yan S. CCS Chem, 2022, 1–13

  49. El-Sayed MA. J Chem Phys, 1963, 38: 2834–2838

    Article  CAS  Google Scholar 

  50. Wang Y, Yang J, Gong Y, Fang M, Li Z, Tang BZ. SmartMat, 2020, 1: e1006

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52103220, 51922021, 52273164) and the Shandong Provincial Natural Science Foundation (ZR2022ZD37, ZR2019ZD50).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuchao Liu, Zhongjie Ren or Shouke Yan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1447_MOESM1_ESM.docx

Constructing Efficient Deep-Blue TADF Emitter by Host-Guest Interactions towards Solution-Processed OLEDs with Narrowband Emission

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Hua, L., Wang, Z. et al. Constructing an efficient deep-blue TADF emitter by host-guest interactions towards solution-processed OLEDs with narrowband emission. Sci. China Chem. 66, 826–836 (2023). https://doi.org/10.1007/s11426-022-1447-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1447-4

Keywords

Navigation