Skip to main content
Log in

The first 2D organic-inorganic hybrid relaxor-ferroelectric single crystal

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Inorganic relaxor ferroelectric solid solution single crystals are spurring new generations of high performance electromechanical devices, including transducers, sensors, and actuators, due to their ultrahigh electric field induced strain, large piezoelectric constant, high electromechanical coupling factor and low dielectric loss. However, relaxor ferroelectric single crystals found in organic-inorganic hybrid perovskites are very limited, but achieving these superior properties in them will be of great significance in the design of modern functional materials. Fortunately, here the first two-dimensional (2D) organic-inorganic hybrid relaxor ferroelectric single crystal, [Br(CH2)3NH3]2PbBr4 (BPA2-PbBr4, BPA = 3-bromopropylamine), achieves some of superior properties. Interestingly, BPA2-PbBr4 reveals a successive relaxor ferroelectric-ferroelectric-paraelectric phase transitions accompanying by a large degree of relaxation ΔTrelax = 61 K and ultralow energy loss (tanδ<0.001). Meanwhile, it exhibits a superior second harmonic generation (SHG) effect with maximum value accounts for 95% of the standard KDP due to great deformation of structure (3.2302×10−4). In addition, temperature dependent luminescence spectra (80–415 K) exhibit fluorescence and phosphorescence overlapping emission originated from inorganic and organic components with the nanosecond-scale short lifetime and the millisecond-scale long lifetime, respectively, and the color of the emitted light is continuously adjustable, which is the first to achieve luminescence and relaxor ferroelectricity compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM. Science, 2006, 313: 334–336

    Article  CAS  Google Scholar 

  2. Larcher D, Tarascon JM. Nat Chem, 2015, 7: 19–29

    Article  CAS  Google Scholar 

  3. Ji C, Sun Z, Zeb A, Liu S, Zhang J, Hong M, Luo J. J Phys Chem Lett, 2017, 8: 2012–2018

    Article  CAS  Google Scholar 

  4. Kutnjak Z, Petzelt J, Blinc R. Nature, 2006, 441: 956–959

    Article  CAS  Google Scholar 

  5. Zhang QM, Bharti V, Zhao X. Science, 1998, 280: 2101–2104

    Article  CAS  Google Scholar 

  6. Pan H, Lan S, Xu S, Zhang Q, Yao H, Liu Y, Meng F, Guo EJ, Gu L, Yi D, Renshaw Wang X, Huang H, MacManus-Driscoll JL, Chen LQ, Jin KJ, Nan CW, Lin YH. Science, 2021, 374: 100–104

    Article  CAS  Google Scholar 

  7. Burns G, Dacol FH. Phys Rev B, 1983, 28: 2527–2530

    Article  CAS  Google Scholar 

  8. Liu Y, Zhang B, Xu W, Haibibu A, Han Z, Lu W, Bernholc J, Wang Q. Nat Mater, 2020, 19: 1169–1174

    Article  CAS  Google Scholar 

  9. Sun E, Cao W. Prog Mater Sci, 2014, 65: 124–210

    Article  CAS  Google Scholar 

  10. Park SE, Shrout TR. J Appl Phys, 1997, 82: 1804–1811

    Article  CAS  Google Scholar 

  11. Lee SG, Monteiro RG, Feigelson RS, Lee HS, Lee M, Park SE. Appl Phys Lett, 1999, 74: 1030–1032

    Article  CAS  Google Scholar 

  12. Yamashita Y, Harada K, Saitoh S. Ferroelectrics, 1998, 219: 29–36

    Article  Google Scholar 

  13. Polman A, Atwater HA. Nat Mater, 2012, 11: 174–177

    Article  CAS  Google Scholar 

  14. Li L, Shang X, Wang S, Dong N, Ji C, Chen X, Zhao S, Wang J, Sun Z, Hong M, Luo J. J Am Chem Soc, 2018, 140: 6806–6809

    Article  CAS  Google Scholar 

  15. You YM, Liao WQ, Zhao D, Ye HY, Zhang Y, Zhou Q, Niu X, Wang J, Li PF, Fu DW, Wang Z, Gao S, Yang K, Liu JM, Li J, Yan Y, Xiong RG. Science, 2017, 357: 306–309

    Article  CAS  Google Scholar 

  16. Hua XN, Liao WQ, Tang YY, Li PF, Shi PP, Zhao D, Xiong RG. J Am Chem Soc, 2018, 140: 12296–12302

    Article  CAS  Google Scholar 

  17. Liu HY, Zhang HY, Chen XG, Xiong RG. J Am Chem Soc, 2020, 142: 15205–15218

    Article  CAS  Google Scholar 

  18. Guo H, Liu P, Zheng S, Zeng S, Liu N, Hong S. Curr Appl Phys, 2016, 16: 1603–1606

    Article  Google Scholar 

  19. Shi C, Ma JJ, Jiang JY, Hua MM, Xu Q, Yu H, Zhang Y, Ye HY. J Am Chem Soc, 2020, jacs.0c00480

  20. Wei WJ, Jiang XX, Dong LY, Liu WW, Han XB, Qin Y, Li K, Li W, Lin ZS, Bu XH, Lu PX. J Am Chem Soc, 2019, 141: 9134–9139

    Article  Google Scholar 

  21. Even J, Pedesseau L, Katan C. ChemPhysChem, 2014, 15: 3733–3741

    Article  CAS  Google Scholar 

  22. Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H. Chem Rev, 2017, 117: 6225–6331

    Article  CAS  Google Scholar 

  23. Jemli K, Audebert P, Galmiche L, Trippé-Allard G, Garrot D, Lauret JS, Deleporte E. ACS Appl Mater Interfaces, 2015, 7: 21763–21769

    Article  CAS  Google Scholar 

  24. Li C, Li LS, Wei WJ, Tan YH. Inorg Chem, 2019, 58: 9733–9737

    Article  CAS  Google Scholar 

  25. Gao HQ, Wei WJ, Tan YH, Tang YZ. Chem Mater, 2020, 32: 6886–6891

    Article  CAS  Google Scholar 

  26. Du K, Tu Q, Zhang X, Han Q, Liu J, Zauscher S, Mitzi DB. Inorg Chem, 2017, 56: 9291–9302

    Article  CAS  Google Scholar 

  27. Alonso JA, Martínez-Lope MJ, Casais MT, Fernández-Díaz MT. Inorg Chem, 2000, 39: 917–923

    Article  CAS  Google Scholar 

  28. Ji C, Wang S, Li L, Sun Z, Hong M, Luo J. Adv Funct Mater, 2018, 29: 1805038

    Article  Google Scholar 

  29. Wang S, Yao Y, Kong J, Zhao S, Sun Z, Wu Z, Li L, Luo J. Chem Commun, 2018, 54: 4053–4056

    Article  CAS  Google Scholar 

  30. Ji C, Dey D, Peng Y, Liu X, Li L, Luo J. Angew Chem, 2020, 132: 19095–19099

    Article  Google Scholar 

  31. Aizu K. J Phys Soc Jpn, 1969, 27: 387–396

    Article  CAS  Google Scholar 

  32. Zhang W, Xiong RG. Chem Rev, 2012, 112: 1163–1195

    Article  CAS  Google Scholar 

  33. Shi PP, Tang YY, Li PF, Liao WQ, Wang ZX, Ye Q, Xiong RG. Chem Soc Rev, 2016, 45: 3811–3827

    Article  CAS  Google Scholar 

  34. Ye HY, Liao WQ, Hu CL, Zhang Y, You YM, Mao JG, Li PF, Xiong RG. Adv Mater, 2016, 28: 2579–2586

    Article  CAS  Google Scholar 

  35. Viehland D, Jang SJ, Cross LE, Wuttig M. J Appl Phys, 1990, 68: 2916–2921

    Article  CAS  Google Scholar 

  36. Bing YH, Bokov AA, Ye ZG. Curr Appl Phys, 2011, 11: S14–S21

    Article  Google Scholar 

  37. Randall CA, Fan Z, Reaney I, Chen L, Trolier-McKinstry S. J Am Ceram Soc, 2021, 104: 3775–3810

    Article  CAS  Google Scholar 

  38. Tauc J. Mater Res Bull, 1970, 5: 721–729

    Article  CAS  Google Scholar 

  39. Dohner ER, Hoke ET, Karunadasa HI. J Am Chem Soc, 2014, 136: 1718–1721

    Article  CAS  Google Scholar 

  40. Dohner ER, Jaffe A, Bradshaw LR, Karunadasa HI. J Am Chem Soc, 2014, 136: 13154–13157

    Article  CAS  Google Scholar 

  41. Yu J, Kong J, Hao W, Guo X, He H, Leow WR, Liu Z, Cai P, Qian G, Li S, Chen X, Chen X. Adv Mater, 2018, 1806385

  42. Hao X, Zhai J, Kong LB, Xu Z. Prog Mater Sci, 2014, 63: 1–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22001102, 21788102), the Jiangxi Provincial Natural Science Foundation (20202BAB213002), the Education Department of Jiangxi Province (GJJ190474), the Fundamental Research Funds for the Central Universities (JXUST, 205200100116) and the Program for Excellent Young Talents (JXUST, JXUSTQJYX2020018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjuan Wei or Yen Wei.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Gao, H., Fang, M. et al. The first 2D organic-inorganic hybrid relaxor-ferroelectric single crystal. Sci. China Chem. 66, 466–474 (2023). https://doi.org/10.1007/s11426-022-1446-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1446-3

Keywords

Navigation