Skip to main content
Log in

Enantioselective synthesis of tetrasubstituted allenes via addition/arylation tandem reaction of 2-activated 1,3-enynes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We report the development of a new class of multifunctional chiral guanidine/Pd(0) catalyst system for 1,4-addition/arylation tandem reaction. A variety of tetra-substituted allenes were readily accessible from three-component “one-pot” transformations of acyclic or cyclic 2-activated 1,3-enynes, malonates and halobenzenes under mild reaction conditions. High levels of yield and enantioselectivity were achieved in the construction of stereogenic center and axis using readily available acyclic guanidine-amides. The mechanistic studies suggest that the guanidine/Pd(0) collaboration has obvious synergism to both base-dominated conjugate addition, and Pd(0)-dominated Heck-type reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For selected review, see: (a) Blieck R, Taillefer M, Monnier F. Chem Rev, 2020, 120: 13545–13598

    Article  CAS  Google Scholar 

  2. Lu T, Lu Z, Ma ZX, Zhang Y, Hsung RP. Chem Rev, 2013, 113: 4862–4904

    Article  CAS  Google Scholar 

  3. Alonso JM, Almendros P. Chem Rev, 2021, 121: 4193–4252

    Article  CAS  Google Scholar 

  4. For selected examples, see: (a) Fu L, Greßies S, Chen P, Liu G. Chin J Chem, 2020, 38: 91–100

    Article  CAS  Google Scholar 

  5. Bao X, Ren J, Yang Y, Ye X, Wang B, Wang H. Org Biomol Chem, 2020, 18: 7977–7986

    Article  CAS  Google Scholar 

  6. Zhao JB, Xu YH. Asymmetric Synthesis of Chiral Allenes. Weinheim: Wiley-VCH, 2021. 141–172

    Google Scholar 

  7. Dherbassy Q, Manna S, Talbot FJT, Prasitwatcharakorn W, Perry GJP, Procter DJ. Chem Sci, 2020, 11: 11380–11393

    Article  CAS  Google Scholar 

  8. Wu M, Han Z, Li K, Wu J’, Ding K, Lu Y. J Am Chem Soc, 2019, 141: 16362–16373

    Article  CAS  Google Scholar 

  9. For selected examples, see: (a) Hashimoto T, Sakata K, Tamakuni F, Dutton MJ, Maruoka K. Nat Chem, 2013, 5: 240–244

    Article  CAS  Google Scholar 

  10. Qian D, Wu LL, Lin Z, Sun J. Nat Commun, 2017, 8: 567–576

    Article  Google Scholar 

  11. Zheng WF, Zhang W, Huang C, Wu P, Qian H, Wang L, Guo YL, Ma S. Nat Catal, 2019, 2: 997–1005

    Article  CAS  Google Scholar 

  12. Chen M, Qian D, Sun J. Org Lett, 2019, 21: 8127–8131

    Article  CAS  Google Scholar 

  13. Scheipers I, Mück-Lichtenfeld C, Studer A. Angew Chem Int Ed, 2019, 58: 6545–6548

    Article  CAS  Google Scholar 

  14. Yang J, Wang Z, He Z, Li G, Hong L, Sun W, Wang R. Angew Chem Int Ed, 2020, 59: 642–647

    Article  CAS  Google Scholar 

  15. Li F, Liang S, Luan Y, Chen X, Zhao H, Huang A, Li P, Li W. Org Chem Front, 2021, 8: 1243–1248

    Article  CAS  Google Scholar 

  16. Schreib BS, Son M, Aouane FA, Baik MH, Carreira EM. J Am Chem Soc, 2021, 143: 21705–21712

    Article  CAS  Google Scholar 

  17. For selected examples, see: (a) Qian H, Yu X, Zhang J, Sun J. J Am Chem Soc, 2013, 135: 18020–18023

    Article  CAS  Google Scholar 

  18. Yao Q, Liao Y, Lin L, Lin X, Ji J, Liu X, Feng X. Angew Chem Int Ed, 2016, 55: 1859–1863

    Article  CAS  Google Scholar 

  19. Poulsen PH, Li Y, Lauridsen VH, Jørgensen DKB, Palazzo TA, Meazza M, Jørgensen KA. Angew Chem Int Ed, 2018, 57: 10661–10665

    Article  CAS  Google Scholar 

  20. Wang J, Zheng S, Rajkumar S, Xie J, Yu N, Peng Q, Yang X. Nat Commun, 2020, 11: 5527–5539

    Article  CAS  Google Scholar 

  21. Hayashi T, Tokunaga N, Inoue K. Org Lett, 2004, 6: 305–307

    Article  CAS  Google Scholar 

  22. Wang M, Liu ZL, Zhang X, Tian PP, Xu YH, Loh TP. J Am Chem Soc, 2015, 137: 14830–14833

    Article  CAS  Google Scholar 

  23. Han JW, Tokunaga N, Hayashi T. J Am Chem Soc, 2001, 123: 12915–12916

    Article  CAS  Google Scholar 

  24. Matsumoto Y, Naito M, Uozumi Y, Hayashi T. J Chem Soc Chem Commun, 1993, 1468–1469

  25. Huang Y, del Pozo J, Torker S, Hoveyda AH. J Am Chem Soc, 2018, 140: 2643–2655

    Article  CAS  Google Scholar 

  26. Yu S, Sang HL, Zhang SQ, Hong X, Ge S. Commun Chem, 2018, 1: 64–74

    Article  Google Scholar 

  27. Adamson NJ, Jeddi H, Malcolmson SJ. J Am Chem Soc, 2019, 141: 8574–8583

    Article  CAS  Google Scholar 

  28. Tsukamoto H, Konno T, Ito K, Doi T. Org Lett, 2019, 21: 6811–6814

    Article  CAS  Google Scholar 

  29. Zhang W, Zheng S, Liu N, Werness JB, Guzei IA, Tang W. J Am Chem Soc, 2010, 132: 3664–3665

    Article  CAS  Google Scholar 

  30. Yang SQ, Wang YF, Zhao WC, Lin GQ, He ZT. J Am Chem Soc, 2021, 143: 7285–7291

    Article  CAS  Google Scholar 

  31. Ye J, Liao Y, Huang H, Liu Y, Fang D, Wang M, Hu L, Liao J. Chem Sci, 2021, 12: 3032–3038

    Article  CAS  Google Scholar 

  32. For selected examples, see: (a) Liao Y, Yin X, Wang X, Yu W, Fang D, Hu L, Wang M, Liao J. Angew Chem Intl Edit, 2020, 59: 1176–1180

    Article  CAS  Google Scholar 

  33. Dong X, Zhan T, Jiang S, Liu X, Ye L, Li Z, Gu Q, Liu X. Angew Chem Int Ed, 2021, 60: 2160–2164

    Article  CAS  Google Scholar 

  34. Zeng Y, Chiou MF, Zhu X, Cao J, Lv D, Jian W, Li Y, Zhang X, Bao H. J Am Chem Soc, 2020, 142: 18014–18021

    Article  CAS  Google Scholar 

  35. Law C, Kativhu E, Wang J, Morken JP. Angew Chem Int Ed, 2020, 59: 10311–10315

    Article  CAS  Google Scholar 

  36. Tang Y, Chen Q, Liu X, Wang G, Lin L, Feng X. Angew Chem Int Ed, 2015, 54: 9512–9516

    Article  CAS  Google Scholar 

  37. Liu Y, Liu X, Hu H, Guo J, Xia Y, Lin L, Feng X. Angew Chem Int Ed, 2016, 55: 4054–4058

    Article  CAS  Google Scholar 

  38. Wang G, Liu X, Chen Y, Yang J, Li J, Lin L, Feng X. ACS Catal, 2016, 6: 2482–2486

    Article  CAS  Google Scholar 

  39. Tang Y, Xu J, Yang J, Lin L, Feng X, Liu X. Chem, 2018, 4: 1658–1672

    Article  CAS  Google Scholar 

  40. Xu X, Dong S, Feng LL, Wang S, Liu X, Feng X. Org Lett, 2020, 22: 2692–2696

    Article  CAS  Google Scholar 

  41. Xiao Y, Zhang J. Angew Chem Int Ed, 2008, 47: 1903–1906

    Article  CAS  Google Scholar 

  42. Xiao Y, Zhang J. Chem Commun, 2010, 46: 752–754

    Article  CAS  Google Scholar 

  43. For selected examples, see: (a) Steuer L, Kaifer E, Himmel HJ. Dalton Trans, 2021, 50: 9467–9482

    Article  CAS  Google Scholar 

  44. Bailey PJ, Pace S. Coord Chem Rev, 2001, 214: 91–141

    Article  CAS  Google Scholar 

  45. Oakley SH, Coles MP, Hitchcock PB. Inorg Chem, 2004, 43: 7564–7566

    Article  CAS  Google Scholar 

  46. Coles MP. Dalton Trans, 2006, 985

  47. Elumalai P, Ujjval R, Nethaji M, Thirupathi N. Polyhedron, 2018, 151: 313–322

    Article  CAS  Google Scholar 

  48. Cui XY, Tan CH, Leow D. Org Biomol Chem, 2019, 17: 4689–4699

    Article  CAS  Google Scholar 

  49. Mishra V, Thomas JM, Chinnappan S, Thirupathi, N. J Organomet Chem, 2019, 892, 1–17

    Article  CAS  Google Scholar 

  50. Francos J, Cadierno V. Dalton Trans, 2019, 48: 9021–9036

    Article  CAS  Google Scholar 

  51. Zhang WX, Xu L, Xi Z. Chem Commun, 2015, 51: 254–265

    Article  Google Scholar 

  52. Parker A, Lamata P, Viguri F, Rodríguez R, López JA, Lahoz FJ, García-Orduña P, Carmona D. Dalton Trans, 2020, 49: 13601–13617

    Article  CAS  Google Scholar 

  53. Kim B, Chinn AJ, Fandrick DR, Senanayake CH, Singer RA, Miller SJ. J Am Chem Soc, 2016, 138: 7939–7945

    Article  CAS  Google Scholar 

  54. Chinn AJ, Kim B, Kwon Y, Miller SJ. J Am Chem Soc, 2017, 139: 18107–18114

    Article  CAS  Google Scholar 

  55. Kwon Y, Chinn AJ, Kim B, Miller SJ. Angew Chem Int Ed, 2018, 57: 6251–6255

    Article  CAS  Google Scholar 

  56. Bárta O, Císařová I, Štěpnička P. Dalton Trans, 2021, 50: 14662–14671

    Article  Google Scholar 

  57. Leitner Z, Císařová I, Štěpnička P. New J Chem, 2022, 46: 1060–1071

    Article  CAS  Google Scholar 

  58. Zhu Y, Liu X, Dong S, Zhou Y, Li W, Lin L, Feng X. Angew Chem Int Ed, 2014, 53: 1636–1640

    Article  CAS  Google Scholar 

  59. Chen Q, Tang Y, Huang T, Liu X, Lin L, Feng X. Angew Chem Int Ed, 2016, 55: 5286–5289

    Article  CAS  Google Scholar 

  60. Chen Q, Xie L, Li Z, Tang Y, Zhao P, Lin L, Feng X, Liu X. Chem Commun, 2018, 54: 678–681

    Article  CAS  Google Scholar 

  61. Ruan S, Zhong X, Chen Q, Feng X, Liu X. Chem Commun, 2020, 56: 2155–2158

    Article  CAS  Google Scholar 

  62. Guo S, Dong P, Chen Y, Feng X, Liu X. Angew Chem Int Ed, 2018, 57: 16852–16856

    Article  CAS  Google Scholar 

  63. Xie J, Liang R, Jia Y. Chin J Chem, 2021, 39: 710–728

    Article  CAS  Google Scholar 

  64. Deposition Number 2129129 (D10) and 2129128 (D69) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre

  65. For selected examples, see: (a) Dong S, Feng X, Liu X. Chem Soc Rev, 2018, 47: 8525–8540

    Article  CAS  Google Scholar 

  66. Dong S, Liu X, Zhu Y, He P, Lin L, Feng X. J Am Chem Soc, 2013, 135: 10026–10029

    Article  CAS  Google Scholar 

  67. Li J, Mo Y, Yan L, Feng X, Su Z, Liu X. CCS Chem, 2022, 4: 650–659

    Article  CAS  Google Scholar 

  68. For selected examples, see: (a) For selected examples, see: Li SH, Xie HB, Zhang SB, Lin YJ, Xu JN, Cao JG. Synlett, 2005, 12: 1885–1888

  69. Li S, Lin Y, Xie H, Zhang S, Xu J. Org Lett, 2006, 8: 391–394

    Article  CAS  Google Scholar 

  70. Li S, Lin Y, Cao J, Zhang S. J Org Chem, 2007, 72: 4067–4072

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21625205) and the Sichuan University (2020SCUNL204). We thank for Dr. Bo Gao (Sichuan University) for the help with the mass spectrometry and Dr. Yuqiao Zhou (Sichuan University) for the assistance with X-ray analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Liu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, J., Ning, L. et al. Enantioselective synthesis of tetrasubstituted allenes via addition/arylation tandem reaction of 2-activated 1,3-enynes. Sci. China Chem. 66, 526–533 (2023). https://doi.org/10.1007/s11426-022-1443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1443-5

Keywords

Navigation